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abstract

A special type of algebraic intersection graph called the n-inordinate invariant intersection graph has

been constructed based on the symmetric group, and its structural properties are studied in the liter-

ature. In this article, we discuss the di�erent types of dominator coloring schemes of the n-inordinate

invariant intersection graphs and their complements, n-inordinate invariant non-intersection graphs,

by obtaining the required coloring pattern and determining the graph invariant associated with the

coloring.
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1. Introduction

For terminology in group theory, we refer to [4]. For basic de�nitions and results in graph theory,

see [13] and for further concepts related to the dominator coloring patterns considered in the study,

refer to [11]. Also, the reader may refer to [5], for the fundamentals in combinatorics.

Coloring and domination in graphs are two well explored areas of research in graph theory. Blend-

ing these notions, the dominator coloring of graphs was introduced in the literature, and following

this, several variants of domination related coloring patterns have been de�ned and studied.

The minimum number of colors used in a proper vertex coloring of a graph G is called the chromatic

number of G, denoted by χ(G), and any coloring of V (G) with χ colors is called a χ-coloring of G.

In a graph G, if a vertex v ∈ V (G) is adjacent to all vertices u ∈ A, for some A ⊆ V (G) or A = {v},
we say that v dominates A and A is dominated by v. In this context, if v /∈ A, we say that v properly

dominates A (ref. [7, 11]).
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Over the years, algebraic graph theory has become an intriguing �eld of research, wherein the

automorphism group of graphs as well as graphs constructed based on di�erent algebraic structures

are exclusively studied (c.f. [6, 9]). Melding these aspects, an algebraic intersection graph, called the

invariant intersection graph of a graph, was constructed based on the automorphism group of graphs,

in [10], and from which special class, called the n-inordinate invariant intersection graph ΛKn , was

identi�ed in [12] as the graph with V (ΛKn)
∼= Sn and any two distinct vertices vπ, vπ′ ∈ V (ΛKn)

corresponding to the permutations π, π′ ∈ Sn are adjacent in ΛKn when fix(π) ∩ fix(π′) ̸= ∅, where
Sn is the symmetric group, and for any π ∈ Sn, fix(π) is the set {x ∈ S : π(x) = x}.
An illustration of n-inordinate invariant intersection graphs is given in Figure 1. Note that the

identity permutation is denoted by π0 and the vertex corresponding to a permutation π ∈ Sn is

denoted by vπ ∈ V (ΛKn), throughout the study.
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Fig. 1. The 4-inordinate invariant intersection graph

In [12], the structural properties of the n-inordinate invariant intersection graphs ΛKn and their

complements, n-inordinate invariant non-intersection graphs, denoted by ΛKn , were investigated and

it was found that ΛKn
∼= Λ∗

Kn
∪ ρ(n)K1, where ρ(i); i ∈ N, is the number of derangements of i

elements and Λ∗
Kn

is the non-trivial component of ΛKn with diameter 2, having n!−ρ(n) vertices.

Following the study in [12], di�erent proper vertex colorings of the graphs ΛKn and ΛKn were

discussed in [8]. In this article, we study the variants of dominator coloring of graphs, for the

n-inordinate invariant intersection graphs and their complements.

As ΛKn has isolated vertices and Λ∗
Kn

has a universal vertex, the study of most of the domination

related coloring schemes of these graphs reduce to their chromatic coloring, and a similar situation

arises in the case of their complements ΛKn , and Λ∗
Kn , respectively. Hence, our primary focus of

study is on the coloring patterns of the connected graphs Λ∗
Kn

− vπ0 , for n ≥ 4, and Λ∗
Kn − vπ0 , for

n ≥ 3, denoted by Λ∗∗
Kn

and Λ∗∗
Kn , respectively.

Note that ω(Λ∗∗
Kn

) = χ(Λ∗∗
Kn

) = (n − 1)!−1 and ω(Λ∗∗
Kn) = χ(Λ∗∗

Kn) = n, as it has been proven

in [12] that ω(ΛKn) = χ(ΛKn) = (n − 1)! and ω(ΛKn) = χ(ΛKn) = n + ρ(n); n ≥ 3. Also, as the

chromatic numbers associated with all the colorings that we consider in our study are minimisation
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parameters, we do not mention them with the de�nition of the coloring.

2. Variants of dominator colorings of n-inordinate invariant intersection

graphs

In this section, we examine the variants of dominator colorings of the graphs ΛKn , Λ
∗
Kn

, Λ∗∗
Kn

ΛKn ,

Λ∗
Kn ,and Λ∗∗

Kn , and for this, we use the notations Vi = {vπ : i ∈ fix(π)}; for 1 ≤ i ≤ n, and

V k
i = {vπ ∈ Vi : |fix(π)|= k}; 1 ≤ i ≤ n; 1 ≤ k ≤ n− 2, throughout the article.

A dominator coloring of a graphG is a proper vertex coloring ofG such that every vertex dominates

at least one color class; possibly its own, and the dominator chromatic number of G is denoted by

χd(G).

A total dominator coloring (resp. double total dominator coloring) of a graph G is a dominator

coloring of G such that every vertex properly dominates at least one color class (resp. two color

classes) and the total dominator chromatic number (resp. double total dominator chromatic number)

of G is denoted by χtd(G) (resp. χdtd(G)).

Theorem 2.1. For n ≥ 4,

(i) χd(Λ
∗∗
Kn

) = χtd(Λ
∗∗
Kn

) = (n− 1)!.

(ii) χdtd(Λ
∗∗
Kn

) = (n− 1)!+1.

Proof. (i) In Λ∗∗
Kn

, the vertices of V 1
i , for any 1 ≤ i ≤ n, are adjacent only to the vertices in the

corresponding Vi. Hence, in any dominator coloring of Λ∗∗
Kn

, these vertices can dominate a color class

if and only if a color is assigned exclusively for the vertices in that Vi. As each Vi; 1 ≤ i ≤ n, induces

a clique in Λ∗∗
Kn

, such exclusive color can be given to exactly one vertex and in any χ-coloring of Λ∗∗
Kn

,

this cannot be an exclusive color. Hence, χd(Λ
∗∗
Kn

) ≥ (n− 1)!.

As it can be seen that for any two vertices vπ∗ , vπ′ ∈ V (Λ∗∗
Kn

) with fix(π∗) ⊆ fix(π′), N(vπ∗) ⊆
N(vπ′), where N(vπ∗∗) = {vπ′′ ∈ V (Λ∗∗

Kn
) : vπ∗∗vπ′′ ∈ E(Λ∗∗

Kn
)}, for any vπ∗∗ ∈ V (Λ∗∗

Kn
), we get the

required dominator coloring pattern by validating if all the vertices of V 1
i ; 1 ≤ i ≤ n, dominate the

required number of color classes.

De�ne a coloring c : V (Λ∗∗
Kn

) → {c1, c2, . . . , c(n−1)!} as follows. As ω(Λ∗∗
Kn

) = χ(Λ∗∗
Kn

) = (n− 1)!−1,

�rst assign the colors c1, c2, . . . , c(n−1)!−1 to the vertices of V1 such that c(vπ1) = c1, c(vπ2) = c2,

c(vπ3) = c3, where π1, π2, π3 ∈ Sn have fix(π1) = (1)(2) . . . (n − 2), fix(π2) = (1)(2) and fix(π3) =

(1)(2) . . . (n− 3)(n). Following this, color the vertices vπ′ ∈ Vi −
i−1⋃
j=1

Vj, for each 2 ≤ i ≤ n, in order,

where the vertices of each Vi; 2 ≤ i ≤ n, are colored with (n− 1)!−1 colors based on the previously

colored vertices in the cliques Vj; 1 ≤ j ≤ i− 1, such that c(vπ4) = c1, c(vπ5) = c2, and c(vπ6) = c3,

where π4, π5, π6 ∈ Sn have fix(π4) = (n−1)(n), fix(π5) = (2)(3) . . . (n−1) and fix(π6) = (n−2)(n−1).

The existence of the above mentioned χ-coloring c of Λ∗∗
Kn

is guaranteed, as the color assigned

to any vertex vπ ∈ V n−2
i is assigned either exactly to one other vertex in V 2

i1
∩ V 2

i2
, or at most two

vertices; that is, one from V 1
i1
and V 1

i2
, where 1 ≤ i ̸= i1 ̸= i2 ≤ n, and i1, i2 /∈ fix(π), in any χ-coloring

of Λ∗∗
Kn

. This is owing to the structure of the graph that demands each color class to contain exactly

one vertex from each Vi; 1 ≤ i ≤ n and if any color is assigned to vπ ∈ V n−2
i with i1, i2 /∈ fix(π) and

to a vertex of V 1
i1
and V 1

i2
, we swap one of the ρ(n− 2) colors assigned to the vertices in V 2

i1
∩ V 2

i2
to

these two vertices, as it does not alter any of the properties of the considered χ-coloring of Λ∗∗
Kn

.
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Now, in order to make this χ-coloring c, a dominator coloring of Λ∗∗
Kn

, we assign c(vπ4) = c(n−1)!,

which makes all the vertices in
n−2⋃
i=1

Vi dominate the color class {vπ1} and the vertices in
n⋃

i=n−1

Vi

dominate the color class {vπ4}. Also, as it can be seen that all the vertices in V (Λ∗∗
Kn

) − {vπ1 , vπ4}
properly dominate either the color class {vπ1} or {vπ3}, the vertex vπ1 properly dominates the color

class {vπ2 , vπ5}, and the vertex vπ4 properly dominates the color class {vπ3 , vπ6}, in this dominator

coloring c of Λ∗∗
Kn

with (n− 1)! colors, we have χd(Λ
∗∗
Kn

) = χtd(Λ
∗∗
Kn

) = (n− 1)!.

(ii) In the dominator coloring c of Λ∗∗
Kn

mentioned above, no vertex in V 1
i dominates two color classes

and using the similar arguments mentioned in (i), it can be deduced that χdtd(Λ
∗∗
Kn

) ≥ (n − 1)!+1.

From the dominator coloring c of Λ∗∗
Kn

, we obtain a double total dominator coloring c of Λ∗∗
Kn

by

assigning c(vπ5) = c(n−1)!+1, which makes every vertex of the graph properly dominate at least two

color classes; thereby completing the proof.

Theorem 2.2. For n ≥ 4,

(i) χd(Λ∗∗
Kn) = χtd(Λ∗∗

Kn) = 2(n− 1).

(ii) χdtd(Λ∗∗
Kn) = 2n− 1.

Proof. Consider the coloring c : V (Λ∗∗
Kn) → {cs : 1 ≤ s ≤ 2(n − 1)} such that for any vertex

vπ ∈ V (Λ∗∗
Kn),

c(vπ) =


ci, vπ ∈ V 1

i , 1 ≤ i ≤ n;

cn−1, vπ ∈ V 2
n−1 ∩ V 2

n ;

cn+i, vπ ∈
n−2⋃
i=1

n−2⋃
k=2

V k
i −

i−1⋃
j=1

V k
j .

It is a dominator coloring of Λ∗∗
Kn as every vertex that corresponds to a permutation �xing k-

elements dominates at least n− k − 1 color classes with respect to this coloring c of Λ∗∗
Kn . Hence,

χd(Λ∗∗
Kn) ≤ 2(n− 1).

In Λ∗∗
Kn , a vertex vπ ∈ Vi; 1 ≤ i ≤ n, dominates a color class if and only if none of the vertices

in that color class are in the same Vi. Consider a vertex vπ ∈ V n−2
i , for some 1 ≤ i ≤ n, such that

t1, t2 /∈ fix(π), where 1 ≤ t1 ̸= t2 ≤ n. Therefore, this vertex vπ can dominate a color class if and

only if all vertices of the color class are from (V 2
t1
∩ V 2

t2
)∪ V 1

t1
∪ V 1

t2
. As there are

(
n
2

)
possible pairs of

such t1 and t2, we must obtain a color class that is exclusive to each Vi; 1 ≤ i ≤ n, except one, for

any such vπ ∈ V n−2
i to dominate a color class. All (n− 1)! vertices of exactly one Vi; 1 ≤ i ≤ n, can

be colored with the same color because for every vπ ∈ V n−2
i there are two Vj's; 1 ≤ i ̸= j ≤ n, such

that they are adjacent to all the vertices of these Vj's, and one among them can be chosen to have

an exclusive color class. Also, as the Vi's are non-disjoint, if colors are assigned to the vertices from

each Vi, in the end, for some 1 ≤ j ̸= i ≤ n, Vi −
n⋃

i ̸=j=1

Vj = V 1
i . Hence, we require at least 2n − 2

colors to obtain a dominator coloring of Λ∗∗
Kn . Therefore, χd(Λ∗∗

Kn) = 2(n − 1). This dominator

coloring c of Λ∗∗
Kn is also its total dominator coloring as every vertex in Vi properly dominates a

color class assigned the color ci′ , 1 ≤ i ̸= i′ ≤ n, and hence, it follows that χtd(Λ∗∗
Kn) = 2(n− 1).

In any χd-coloring of Λ∗∗
Kn , it can be seen that every vertex vπ properly dominates at least n−k−1

color classes, where k = |fix(π)| and all but one vertex in
n⋃

i=1

V n−2
i properly dominate at least two

color classes. Therefore, it can be deduced that in an optimal double total dominator coloring, all

V 1
i ; 1 ≤ i ≤ n, have to be assigned unique colors and hence χdtd(Λ∗∗

Kn) = 2n− 1.
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Corollary 2.3. For n ≥ 4,

(i) χdtd(Λ
∗∗
Kn

) = χd(Λ
∗∗
Kn

) + 1.

(ii) χdtd(Λ∗∗
Kn) = χd(Λ∗∗

Kn) + 1.

A global dominator coloring (resp. total global dominator coloring) of a graph G is a proper coloring

of G such that every vertex of G dominates (resp. properly dominates) as well as anti-dominates at

least one color class, where a vertex v ∈ V (G) is said to anti-dominate a set A ⊂ V (G) if uv /∈ E(G),

for all u ∈ A, such that v /∈ A. The global dominator chromatic number (resp. total global dominator

chromatic number) of G is denoted by χgd(G) (resp. χtgd(G)).

Theorem 2.4. For n ≥ 4,

(i) χgd(Λ
∗∗
Kn

) = (n− 1)!+(n− 3).

(ii) χtgd(Λ
∗∗
Kn

) = (n− 1)!+(n− 2).

(iii) χgd(Λ∗∗
Kn) = χtgd(Λ∗∗

Kn) = 2n.

Proof. (i) Any vertex vπ ∈ V n−2
i is not adjacent to 2ρ(n − 1) vertices of V 1

i′ and ρ(n − 2) vertices

of V 2
i′ , such that 1 ≤ i ̸= i′ ≤ n and i′ /∈ fix(π), in Λ∗∗

Kn
. Therefore, if a vertex vπ ∈ V n−2

i has

to anti-dominate any color class with respect to some proper coloring of Λ∗∗
Kn

, such a color class

must contain only the vertices of V 1
i1
∪ V 1

i2
∪ (V 2

i1
∩ V 2

i2
), where 1 ≤ i1 ̸= i2 ≤ n, and i1, i2 /∈ fix(π).

As there are
(
n
2

)
possible pairs of such i1 and i2, we must obtain a color class that is exclusive to

each Vi; 1 ≤ i ≤ n, except one, for any such vπ ∈ V n−2
i to anti-dominate a color class. Hence,

χgd(Λ
∗∗
Kn

) ≥ χ(Λ∗∗
Kn

) + (n− 2).

There exists a χ-coloring of Λ∗∗
Kn

, say c∗, in which some color ct; 1 ≤ t ≤ (n − 1)!−1, is assigned

to n vertices of V 1
i ; that is, one from each V 1

i , as every color class in any χ-coloring of Λ∗∗
Kn

must

contain one vertex from each Vi; 1 ≤ i ≤ n, and let vπi
∈ V 1

i ; 1 ≤ i ≤ n, be n vertices such that

for all 1 ≤ i ≤ n, c∗(vπi
) = ct, for some 1 ≤ t ≤ (n − 1)!−1. The existence the coloring c∗ is

guaranteed owing to the nature of the color classes in any χ-coloring of Λ∗∗
Kn

and the fact that Vi's

are non-disjoint.

We make such a χ-coloring c∗ of Λ∗∗
Kn

, a global dominator coloring of Λ∗∗
Kn

, by assigning the color

c(n−1)!−1+i to the vertex vπi
∈ V 1

i ; 1 ≤ i ≤ n − 2. Now, only one vertex in V 1
n−1 and one vertex

in V 1
n have the color ct, and as mentioned in Theorem 2.1, we swap the color of the vertices vπn−1

and vπn with the color of a vertex, say vπ′ , in V 2
n−1 ∩ V 2

n . Here, every vertex in Vi; 1 ≤ i ≤ n − 2,

dominates the color class {vπi
} and the vertices of Vn−1 ∪ Vn dominate the color class {vπ′}. Also,

any vertex vπ ∈ V (Λ∗∗
Kn

) − {v(1)(2)...(n−2)} anti-dominates the color class {vπi′
}, 1 ≤ i′ ≤ n such

that i /∈ fix(π) and the vertex v(1)(2)...(n−2) anti-dominates the color class {vπ′}; thereby, yielding
χgd(Λ

∗∗
Kn

) = (n− 1)!+n− 3.

(ii) In the above mentioned global dominator coloring c∗ of Λ∗∗
Kn

, all the vertices of V (Λ∗∗
Kn

), except

the ones in V 1
i assigned the colors c(n−1)!−1+i, for 1 ≤ i ≤ n−2, and the vertex vπ′ , does not properly

dominate any color class. Therefore, it can be seen from (i) that we require at least χgd(Λ
∗∗
Kn

) + 1

colors, in any total global dominator coloring of Λ∗∗
Kn

.

To obtain a total global dominator coloring of Λ∗∗
Kn

with χgd(Λ
∗∗
Kn

)+ 1 colors, consider the coloring

c∗ de�ned above and assign the color c(n−1)!+n−2 to the vertex v(1)(2)...(n−2), which makes the vertices

vπi
; 1 ≤ i ≤ n− 2, dominate the color class {v(1)(2)...(n−2)}. As mentioned in Theorem 2.1, any color,

say cr, for some 1 ≤ r ≤ (n− 1)!−1 and r ̸= t, assigned to the vertex v(1)(2)...(n−2) is assigned either

exactly to one other vertex of the form v(n−1)(n) or at most two vertices of the form v(n−1) and v(n),
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in any proper coloring of Λ∗∗
Kn

. Hence, as the vertex v(1)(2)...(n−2) is assigned a new color by c∗, the

vertex now vπ′ properly dominates the color class of the color cr which was earlier assigned to the

vertex v(1)(2)...(n−2). Therefore, we obtain an optimal total global dominator coloring of Λ∗∗
Kn

with

(n− 1)!+(n− 2) colors.

(iii) By Theorem 2.2, it can be seen that in any χd-coloring of Λ∗∗
Kn , any vertex vπ anti-dominates

at most k−1 color classes, where k = |fix(π)|. Therefore, we require additional colors for the vertices
V 1
i ; 1 ≤ i ≤ n, to anti-dominate some color class. For any vertex in V 1

i ; 1 ≤ i ≤ n, to anti-dominate

a color class, the color must exclusively be assigned to the vertices to which it is not adjacent to; that

is, only to the vertices of that particular Vi. Therefore, to minimise the number of such additional

colors, we assign the color c2n−1 to the vertex vπ, such that |fix(π)|= n − 2. If t1, t2 /∈ fix(π), then

the vertices of V 1
t1

and V 1
t2
; for some 1 ≤ t1 ≤ t2 ≤ n, still do not anti-dominate any color class.

Hence, a vertex vπ′ such that {t1, t2} ⊆ fix(π′), is assigned the color c2n to obtain a global dominator

coloring of Λ∗∗
Kn with 2n colors. Note that the above mentioned coloring is also a total global

dominator coloring of Λ∗∗
Kn , as every vertex of the graph properly dominates a color class. Also,

as the minimality of the parameter follows from the structure of Λ∗∗
Kn and the global dominator

coloring protocol, χgd(Λ∗∗
Kn) = χtgd(Λ∗∗

Kn) = 2n.

A proper coloring c of a graph G is said to be a rainbow dominator coloring of G if c is a dominator

coloring of G such that for every u, v ∈ V (G), there exists a u − v path in which no two internal

vertices have the same color and the rainbow dominator chromatic number of G is denoted by χrd(G).

A power dominator coloring of a graph G is a proper vertex coloring of G such that every vertex power

dominates at least one color class; possibly its own, and the power dominator chromatic number of

G is denoted by χpd(G). A vertex v ∈ V (G) is said to power dominate the vertices in M(v) ⊆ V (G),

which is constructed as follows.

(i) M(v) = N [v].

(ii) Consider a vertex w /∈ M(v) and add it to M(v) if there exists a u ∈ N(w) ∩M(v) such that

all v1 ∈ N(u)− {w} are already in M(v).

(iii) Repeat Step (ii) until no vertex could be added to M(v).

Proposition 2.5. For any n ≥ 4,

(i) χrd(Λ
∗∗
Kn

) = χpd(Λ
∗∗
Kn

) = χd(Λ
∗∗
Kn

).

(ii) χrd(Λ∗∗
Kn) = χpd(Λ∗∗

Kn) = χd(Λ∗∗
Kn).

Proof. As the graph Λ∗∗
Kn

has diameter 2, all u − v path of length 2 between any two vertices of

Λ∗∗
Kn

, whose only internal vertex has a distinct color. Hence, χrd(Λ
∗∗
Kn

) = χd(Λ
∗∗
Kn

). In Λ∗∗
Kn , any

two non-adjacent vertices vπ1 and vπ2 correspond to permutations such that fix(π) ∩ fix(π1) ̸= ∅.
Here, if 1 ≤ |fix(π1) ∪ fix(π2)|≤ n − 2, then there is a path of length 2 between the vertices vπ1

and vπ2 in Λ∗∗
Kn and its internal vertex is uniquely colored, in any proper coloring of Λ∗∗

Kn . If

|fix(π1) ∪ fix(π2)|= n, then the non-adjacent vertices do not have a common neighbour and we have

a path vπ1 − vπ′
1
− vπ′

2
− vπ2 , where vπ′

1
∈ V 1

i and vπ′
2
∈ V 1

i′ , where 1 ≤ i ̸= i′ ≤ n, such that i /∈ fix(π1)

and i′ /∈ fix(π2). As |fix(π)|≤ n − 2, for any π ∈ Sn, there exists at least two vertices in
n⋃

i=1

V 1
i to

which any vertex of Λ∗∗
Kn is adjacent to. As this path is of length 3, and both internal vertices vπ′

1
vπ′

2

are colored with distinct colors, in any proper coloring of Λ∗∗
Kn , χrd(Λ∗∗

Kn) = χd(Λ∗∗
Kn).

Also, the idea of a vertex power dominating a color class reduces to the vertex dominating the color

class in the graphs Λ∗∗
Kn

and Λ∗∗
Kn , for n ≥ 4, as there is no vertex w /∈ N [v] having a unique neighbour
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which is not a neighbour of v, for any v in Λ∗∗
Kn

or Λ∗∗
Kn . This is because, corresponding to every

k-element �x, there are ρ(n−k) permutations and hence, ρ(n−k) vertices corresponding to the same

k-element �x in the graphs Λ∗∗
Kn

and Λ∗∗
Kn . The adjacencies and non-adjacencies between two vertices

corresponding to any pair of permutations with distinct k-element �xes induce the same relation on

all of the ρ(n− k) vertices; thereby yielding χpd(Λ
∗∗
Kn

) = χd(Λ
∗∗
Kn

) and χpd(Λ∗∗
Kn) = χd(Λ∗∗

Kn).

A majority dominator coloring of a graph G is a proper vertex coloring of G in which each vertex

of the graph dominates at least half of one color class and the majority dominator chromatic number

of G is denoted by χmd(G).

Theorem 2.6. For any n ≥ 4,

(i) χmd(Λ
∗∗
Kn

) = χ(Λ∗∗
Kn

).

(ii) χmd(Λ∗∗
Kn) = χ(Λ∗∗

Kn).

Proof. (i) Consider a χ-coloring of Λ∗∗
Kn

, where the colors ci; 1 ≤ i ≤ (n− 1)!−1, are assigned to the

vertices of V1, as it induces a clique in Λ∗∗
Kn

. Following this, consider the vertices Vi − (
i−1⋃
j=1

Vj), for

each 2 ≤ i ≤ n− 2, in order. Assign distinct colors to vπ′ ∈ V 1
i ; 2 ≤ i ≤ n, such that c(vπ′) = c(vπ),

where vπ ∈ V 1
1 and each of the remaining vertices of V k

i ; 2 ≤ i ≤ n and 2 ≤ k ≤ n− 2, with distinct

colors based on its previously colored vertices. In this coloring, {v(1)(2)...(n−2), v(n−1)(n)} is the least

cardinality of a color class and every vertex of Λ∗∗
Kn

is adjacent to exactly one of these vertices. Hence,

every vertex of Λ∗∗
Kn

dominates half of this color class and we obtain χmd(Λ
∗∗
Kn

) = χ(Λ∗∗
Kn

) = (n−1)!−1.

(ii) Consider a chromatic coloring c of ΛKn , in which the color ci is assigned to the vertices

of Vi −
i−1⋃
j=1

Vj, for each 1 ≤ i ≤ n. In this coloring, the number of vertices assigned the color ci is

ρ(n−1)+
n−2∑
k=1

(
n−i

k−i−1

)
ρ(n−k) and it decreases from (n−1)! to ρ(n−1) as the value of i increases from 1

to n. Also, in this coloring, every vertex vπ ∈ V (ΛKn)−Vn dominates the color class {vπ′ : c(vπ) = cn}.
Hence, we must prove that every vertex in Vn dominates at least half of some color class, to prove the

result. To prove this, it is enough to prove that a vertex vπ1 ∈ V n−2
n −(V1∩V2), dominates at least half

of V1 or V2. Therefore, consider the vertex vπ1 ∈ V (Λ∗∗
Kn), where π1 = (3)(4) . . . (n). This is adjacent

to exactly ρ(n−1)+ρ(n−2) vertices of V1 and ρ(n−1) vertices of V2. As ρ(n−1)+ρ(n−2) ≥ (n−1)!
2

,

for all n ≥ 3, the vertex vπ1 is adjacent to more than half of the vertices of V1 and hence we obtain

a majority dominator coloring of ΛKn with n colors.

Proposition 2.7. For n ≥ 3,

(i) χd(Λ
∗
Kn

) = χtd(Λ
∗
Kn

) = χrd(Λ
∗
Kn

) = χpd(Λ
∗
Kn

) = χmd(Λ
∗
Kn

) = χ(Λ∗
Kn

).

(ii) χdtd(Λ
∗
Kn

) = (n− 1)!+1.

(iii) χd(ΛKn) = χgd(ΛKn) = χpd(ΛKn) = χmd(ΛKn) = (n− 1)!+ρ(n).

Proof. As Λ∗
Kn

has a universal vertex vπ0 , every vertex of Λ∗
Kn

properly dominate a color class,

with respect to any of its χ-coloring and they also power dominate the color class {vπ0}. Owing to

the existence of vπ0 , any χ-coloring of Λ∗
Kn

is its rainbow dominator coloring, and the double total

dominator coloring of Λ∗
Kn

can ve viewed as the total dominator coloring of Λ∗∗
Kn

, which implies that

(ii) is immediate from Theorem 2.1.
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As ΛKn = Λ∗
Kn

∪ ρ(n)K1, in any variant of dominator coloring of ΛKn all these ρ(n) isolated

vertices are assigned unique colors, for them to dominate their color class. Hence, we obtain the

required values of the above mentioned variants of dominator chromatic numbers of the graphs Λ∗
Kn

and ΛKn .

Proposition 2.8. For n ≥ 3,

(i) χd(Λ∗
Kn) = χgd(Λ∗

Kn) = χpd(Λ∗
Kn) = 2n− 1.

(ii) χmd(Λ∗
Kn) = n+ 1.

(iii) χd(ΛKn) = χtd(ΛKn) = χdtd(ΛKn) = χrd(ΛKn) = χpd(ΛKn) = χmd(ΛKn) = n+ ρ(n).

Proof. The proofs of (i) and (ii) are immediate from the fact that the graph Λ∗
Kn = Λ∗∗

Kn ∪ vπ0 ,

where vπ0 is an isolated vertex and hence in any variant of dominator coloring of Λ∗
Kn , the vertex

vπ0 is given a unique color to dominate itself. Also, ΛKn is a graph with diameter 2, as there are

ρ(n) universal vertices in it. Hence, in any proper coloring of ΛKn , all these ρ(n) universal vertices

are assigned distinct colors apart from the existing n colors that were used to color the vertices of

Λ∗∗
Kn , and as ρ(n) ≥ 2, for all n ≥ 3, the result follows.

A vertex v in a graph G is said to strongly dominate a set A ⊆ V (G) if v dominates A and

deg(v) ≥ deg(u), for all u ∈ A. A strong dominator coloring of a graph G is a proper vertex coloring

of G such that every vertex strongly dominates at least one color class and the strong dominator

chromatic number of G is denoted by χsd(G).

Theorem 2.9. For n ≥ 4,

(i) χsd(Λ
∗∗
Kn

) = (n− 1)!+(n− 2).

(ii) χsd(Λ
∗
Kn

) = (n− 1)!+(n− 1).

(iii) χsd(ΛKn) = (n− 1)!+(n− 1) + ρ(n).

Proof. From a χ-coloring of Λ∗∗
Kn

, we obtain a strong dominator coloring of Λ∗∗
Kn

by assigning a

unique color c(n−1)!−1+i; 1 ≤ i ≤ n, which is not repeated anywhere to exactly one vertex of V 1
i ;

for each 1 ≤ i ≤ n, so that every vertex of the graph strongly dominates a color class. Hence,

χsd(Λ
∗∗
Kn

) ≤ (n− 1)!+(n− 2).

In a strong dominator coloring of a graph, as every vertex has to dominate a color class where this

color class must contain only the vertices having degree equal to or less than the degree of the vertex

considered, the vertices of the least degree in Λ∗∗
Kn

, which are in V 1
i must form a color class, so as to

minimise the number of colors used in a strong dominator coloring of Λ∗∗
Kn

. As
n⋃

i=1

Vi = nKρ(n), and

if a vertex of V 1
i ; 1 ≤ i ≤ n, has to dominate a color class, all vertices of that color class must be in

the corresponding Vi, the vertices of the least degree forms n color classes, so that they are strongly

dominated by all the other vertices. Assigning unique colors to (n − 1) V 1
i 's, makes the vertices in

the n-th V 1
i automatically get a unique color, and therefore, χsd(Λ

∗∗
Kn

) ≥ (n− 1)!+(n− 2).

As it is immediate that the strong dominator coloring of Λ∗∗
Kn

can be extended to Λ∗
Kn

, and ΛKn by

assigning a unique colors to the vertex vπ0 , and to the isolated vertices in ΛKn , the result follows.

Theorem 2.10. For n ≥ 4,
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(i)

χsd(Λ∗∗
Kn) =


n+

(
n
n
2

)
+

n−2∑
k=⌊n

2
⌋+1

(
n
k

)
ρ(n− k), when n is even;

n+
n−2∑

k=⌊n
2
⌋+1

(
n
k

)
ρ(n− k), when n is odd.

.

(ii) χsd(Λ∗
Kn) = χsd(Λ∗∗

Kn) + 1.

(iii) χsd(ΛKn) = χsd(Λ∗
Kn) + ρ(n).

Proof. In Λ∗∗
Kn , every vertex of

n⋃
i=1

V k
i ; ⌊n

2
⌋ + 1 ≤ k ≤ n − 2, is adjacent to only the vertices of

degree higher than theirs. Therefore, in any strong dominator coloring of Λ∗∗
Kn , all these vertices

must be assigned unique colors. Every vertex of
n⋃

i=1

V k
i ; 1 ≤ k ≤ ⌈n

2
⌉ − 1, is adjacent to at least one

of the vertices of
n⋃

i=1

V k
i ; ⌊n

2
⌋+ 1 ≤ k ≤ n− 2, which are uniquely colored and hence, all the vertices

of
n⋃

i=1

V k
i ; 1 ≤ k ≤ ⌈n

2
⌉ − 1, strongly dominate at least one color class. Therefore, these vertices in

n⋃
i=1

V k
i ; 1 ≤ k ≤ ⌈n

2
⌉ − 1, are properly colored using n colors, apart from the ones assigned to the

vertices of
n⋃

i=1

⌊n
2
⌋+1⋃

k=1

V k
i . If n is odd, we are done.

If n is even, the vertices of
n⋃

i=1

V
n
2

i remains to be colored, at this point. Each vertex vπ ∈
n⋃

i=1

V
n
2

i is

adjacent to ρ(n
2
) vertices of

n⋃
i=1

V
n
2

i , which are of the same degree and to the vertices in
n⋃

i=1

V k
i ; 1 ≤

k ≤ n
2
− 1, which have degree higher than that of vπ. The subgraph of Λ∗∗

Kn induced by
n⋃

i=1

V
n
2

i

is
(
n
n
2

)
Kρ(n

2
),ρ(n

2
), where ρ(n

2
) vertices correspond to permutations having a particular n

2
-element �x.

Therefore, for every vertex vπ ∈
n⋃

i=1

V
n
2

i to strongly dominate a color class, unique colors must be

assigned to at least one of these ρ(n
2
) vertices that correspond to permutations with a distinct n

2
-

element �x. Hence, χsd(Λ∗∗
Kn) = n+

(
n
n
2

)
+

n−2∑
k=⌊n

2
⌋+1

(
n
k

)
ρ(n− k), when n is even.

Using a similar arguments in Theorem 2.9, the above mentioned χsd-coloring of Λ∗∗
Kn can be

extended as the χsd-coloring of Λ∗
Kn , and ΛKn , by giving unique colors to vπ0 , and the ρ(n) universal

vertices of ΛKn ; completing the proof.

A subset S ⊆ V (G) in a graph G is called semi-strong if |N(v) ∩ S|≤ 1, for all v ∈ V (G).

Partitioning V (G) into semi-strong subsets is called a semi-strong coloring of G and a dominator

semi-strong color partition of G is a semi-strong coloring of G in which every vertex v ∈ V (G)

dominates at least one color class. The minimum order of such a partition is called the dominator

semi-strong color partition number of G, denoted by χssd(G).

Proposition 2.11. For n ∈ N,
(i) χssd(Λ

∗∗
Kn

) = χssd(Λ∗∗
Kn) = n!−ρ(n)− 1.

(ii) χssd(Λ
∗
Kn

) = χssd(Λ∗
Kn) = n!−ρ(n).
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(iii) χssd(ΛKn) = χssd(ΛKn) = n!.

Proof. Assigning unique colors to each vertex of any graph is trivially a semi-strong dominator col-

oring of the graph. Conversely, we claim that any semi-strong subset of V (Λ∗∗
Kn

) as well as V (Λ∗∗
Kn),

is a singleton. If possible, let S ′ = {vπ1 , vπ2 : fix(π1)∩fix(π2) ̸= ∅} be a semi-strong subset of V (Λ∗∗
Kn

).

Clearly, here fix(π1) ̸= fix(π2) because, if fix(π1) = fix(π2), we get N(vπ1) = N(vπ2) ̸= ∅. Therefore,
assume fix(π1) ⊂ fix(π2) and hence |fix(π2)|≥ 2. As there exists ρ(n − |fix(π1)|) − 1 vertices of the

graph Λ∗∗
Kn

corresponding to permutations having the same �x as fix(π1) and all of them will be

adjacent to both the vertices of S ′, it yields a contradiction.

Consider a subset S∗ = {vπ1 , vπ2 : fix(π1)∩fix(π2) = ∅} of V (Λ∗∗
Kn

). In Λ∗∗
Kn

, as there exists at least

one vertex vπ3 such that fix(π3)∩ fix(π1) ̸= ∅ and fix(π3)∩ fix(π2) ̸= ∅, owing to the closure property

of Sn; S
∗ cannot be semi-strong. Therefore, any semi-strong subset of V (Λ∗∗

Kn
) is a singleton and

χssd(Λ
∗∗
Kn

) = n!−ρ(n) − 1. Using the same argument, as we can prove that any semi-strong subset

of V (Λ∗∗
Kn) is also a singleton, (i) follows.

Both the graphs Λ∗
Kn

and ΛKn have universal vertices, and hence this leads to the assignment of

unique colors to all vertices of these graphs to abide by the dominator semi-strong coloring protocol

of graphs. Also, as every isolated vertex of any graph is assigned a unique color in any dominator

coloring, and as ΛKn
∼= Λ∗

Kn
∪ ρ(n)K1 and Λ∗

Kn
∼= Λ∗∗

Kn ∪ vπ0 , the result is immediate.

A proper coloring of a graph G in which the cardinalities of the color classes di�er by at most one

is called an equitable coloring of G and the equitable chromatic number of G is denoted by χe(G). An

equitable coloring of G in which every vertex v ∈ V (G) dominates at least one color class is called an

equitable dominator coloring of G and the equitable dominator chromatic number of G is denoted by

χed(G) (see [2, 3]). As the equitable dominator coloring of graphs is closely related to their equitable

coloring, we use the following result obtained in [8].

Theorem 2.12. [8] The equitable chromatic numbers of the graphs Λ∗
Kn

and ΛKn are ⌈n!−ρ(n)−1
2

⌉+1

and ⌈n!−ρ(n)
2

⌉+ ρ(n), respectively.

Theorem 2.13. For n ∈ N,
(i) χed(Λ

∗∗
Kn

) = ⌈n!−ρ(n)−3
2

⌉+ 2.

(ii) χed(Λ
∗
Kn

) = χe(Λ
∗
Kn

).

(iii) χed(ΛKn) = χed(Λ
∗
Kn

) + ρ(n).

Proof. In any χd-coloring c of Λ∗∗
Kn

, we know that there are at least two singleton color classes (see

Theorem 2.1). Therefore, in any equitable dominator coloring of Λ∗∗
Kn

, the color classes must have

cardinality either 1 or 2. To reduce the number of colors, we minimise the number of color classes that

are singletons by assigning unique colors to the vertices vπ, vπ′ ∈ V (Λ∗∗
Kn

), where |fix(π)∪ fix(π′)|= n

and fix(π) ∩ fix(π′) = ∅. Therefore, the remaining n!−ρ(n) − 3 vertices of Λ∗∗
Kn

are partitioned into

independent sets of cardinality 2. This partition can be viewed as the equitable coloring of Λ∗
Kn

given in the proof of Theorem 2.12 (ref. [8]), just by removing the vertices vπ, vπ′ and vπ0 . Hence,

χed(Λ
∗∗
Kn

) = ⌈n!−ρ(n)−3
2

⌉+ 2.

In any proper coloring of Λ∗
Kn

, the vertex vπ0 is assigned a unique color, where any vertex dominates

this color class. Also, as the remaining vertices are partitioned equitably in any equitable coloring of

Λ∗
Kn

, any χe-coloring of Λ∗
Kn

becomes an equitable dominator coloring of Λ∗
Kn

. The same equitable

dominator coloring of Λ∗
Kn

when extended to the graph ΛKn , where the ρ(n) universal vertices are
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assigned distinct colors to dominate themselves becomes an equitable dominator coloring of ΛKn .

The minimality of these parameters are also ensured by the minimality of χe(Λ
∗
Kn

); thereby yielding

the required result.

Theorem 2.14. For n ∈ N,
(i) χed(Λ∗

Kn) = ⌈n!−ρ(n)−1
2

⌉+ 1.

(ii) χed(ΛKn) = χe(ΛKn).

Proof. The graph ΛKn has ρ(n) universal vertices and hence any χe-coloring of ΛKn is its χed-

coloring. As the graph Λ∗
Kn has exactly one isolated vertex vπ0 , a unique color is assigned to it in

any dominator coloring of Λ∗
Kn . Therefore, in any equitable dominator coloring of Λ∗

Kn , each color

class must have either one or two vertices. That is, the remaining n!−ρ(n)− 1 vertices of Λ∗
Kn are

partitioned into independent sets of cardinality 1 or 2, in any equitable dominator coloring of Λ∗
Kn .

As the same kind of partitioning of V (ΛKn) is obtained to determine its equitable coloring pattern

in Theorem 2.12, we determine the χed-coloring of Λ∗
Kn based on the χe-coloring of ΛKn given in the

proof of Theorem 2.12 in [8].

Consider the equitable chromatic partition of V (ΛKn) without the the ρ(n) universal vertices and

make vπ0 a singleton. Then, the other vertex which was assigned the same color as vπ0 in the χe-

coloring of V (ΛKn), either remains a singleton or it can be given the same color as some other vertex,

which is a singleton in the χe-coloring of ΛKn (For more details, see [8]). This is possible because Sn

is a group, and there always exists at least one unique k-element �x which is disjoint with the any

given k′-element �x, where 1 ≤ k ≤ k′ ≤ n−2. This gives an optimal equitable dominator coloring of

Λ∗
Kn , as there are at most two singletons, which cannot be paired with any other vertex of ΛKn .

Based on the structure of Λ∗∗
Kn , it can be seen that its dominator coloring pattern is according

to the assignment of colors to the ρ(n− 1) vertices in each V 1
i ; 1 ≤ i ≤ n. As there does not exist a

generalisable pattern for ρ(i), owing to its dependency on the integer partitioning, which by itself is

an unsolved problem (For details, refer to [1]), determining an equitable partition of these values is

highly challenging. In view of this, determining χed(Λ∗∗
Kn) becomes highly arduous and therefore,

remains an open problem, at this point of study.

S.No. Ch. No. ΛKn Λ∗
Kn

Λ∗∗
Kn

ΛKn Λ∗
Kn Λ∗∗

Kn

1 χd (n− 1)! +ρ(n) (n− 1)! (n− 1)! n+ ρ(n) 2n− 1 2(n− 1)

2 χtd Cannot Admit (n− 1)! (n− 1)!+1 n+ ρ(n) Cannot Admit 2(n− 1)

3 χdtd Cannot Admit (n− 1)!+1 (n− 1)!+2 n+ ρ(n) Cannot Admit 2n− 1

4 χgd (n− 1)! +ρ(n) Cannot Admit (n− 1)!+(n− 3) Cannot Admit 2n− 1 2n

5 χtgd Cannot Admit Cannot Admit (n− 1)!+(n− 2) Cannot Admit Cannot Admit 2n

6 χrd Not De�ned (n− 1)! (n− 1)! n+ ρ(n) Not De�ned 2(n− 1)

7 χpd (n− 1)! +ρ(n) (n− 1)! (n− 1)! n+ ρ(n) n+ 1 2(n− 1)

8 χmd (n− 1)! +ρ(n) (n− 1)! (n− 1)!−1 n+ ρ(n) n+ 1 n

9 χsd (n− 1)!+ (n− 1) +ρ(n) (n− 1)! +(n− 1) (n− 1)! +(n− 2) 1 + ρ(n) + n +
(

n
n
2

)
+

n−2∑
k=⌈n

2
⌉

(
n
k

)
ρ(n − k) 1 + n +

(
n
n
2

)
+

n−2∑
k=⌈n

2
⌉

(
n
k

)
ρ(n − k) n +

(
n
n
2

)
+

n−2∑
k=⌈n

2
⌉

(
n
k

)
ρ(n − k)

10 χssd n!−ρ(n) n!−ρ(n) n!−ρ(n)− 1 n! n!−ρ(n)− 1 n!−ρ(n)− 1

11 χed ⌈n!−ρ(n)−1
2 ⌉ +ρ(n) + 1 ⌈n!−ρ(n)−1

2 ⌉ +1 ⌈n!−ρ(n)−3
2 ⌉ +2 ⌈n!−ρ(n)

2 ⌉ +ρ(n) ⌈n!−ρ(n)−1
2 ⌉+ 1 2(n − 1) ≤ χed(Λ

∗∗
Kn ) ≤ ⌈n!−ρ(n)−nρ(n−1)

ρ(n−1)
⌉ +n

Table 1. Variants of dominator coloring parameters of the n-inordinate invariant intersection graphs and their derived

graphs
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3. Conclusion

In this article, we have exclusively investigated di�erent dominator coloring schemes for the n-

inordinate invariant intersection graphs and their derived graphs; a summary of which is given in

Table 1. We have obtained the coloring patterns and determined the graph invariant associated

with each of the dominator coloring considered. As this investigation gives rise to six structures

associated with the n-inordinate invariant intersection graphs, it yields a vast scope for future study;

which includes the investigation of other coloring and domination-related parameters, the spectral

properties, algebraic properties, etc. of these graphs.
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