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abstract

Je� Remmel introduced the concept of a k-11-representable graph in 2017. This concept was �rst

explored by Cheon et al. in 2019, who considered it as a natural extension of word-representable

graphs, which are exactly 0-11-representable graphs. A graph G is k-11-representable if it can be

represented by a word w such that for any edge (resp., non-edge) xy in G the subsequence of w formed

by x and y contains at most k (resp., at least k+1) pairs of consecutive equal letters. A remarkable

result of Cheon at al. is that any graph is 2-11-representable, while it is still unknown whether

every graph is 1-11-representable. Cheon et al. showed that the class of 1-11-representable graphs is

strictly larger than that of word-representable graphs, and they introduced a useful toolbox to study

1-11-representable graphs, which was extended by additional powerful tools suggested by Futorny

et al. in 2024. In this paper, we prove that all graphs on at most 8 vertices are 1-11-representable

hence extending the known fact that all graphs on at most 7 vertices are 1-11-representable. Also,

we discuss applications of our main result in the study of multi-1-11-representation of graphs we

introduce in this paper analogously to the notion of multi-word-representation of graphs suggested

by Kenkireth and Malhotra in 2023.
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1. Introduction

Various methods for representing graphs extend far beyond the conventional use of adjacency or

incidence matrices; for example, see [9] for a discussion. Of particular relevance to our paper are
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representations of graphs by words or sequences, where adjacency between a pair of vertices is

determined by the occurrence of a �xed pattern in the subword or subsequence formed by the

vertices. For instance, in the extensively studied word-representable graphs [6], �rst studied in [7]

and de�ned in Subsection 2.1, edges are determined by the strict alternation of vertices.

Another representation method is k-11-representation, introduced by Je� Remmel in 2017 and

de�ned in Subsection 2.2, where at most k violations of strict alternation are allowed to de�ne an

edge between two vertices. Consequently, word-representable graphs correspond precisely to 0-11-

representable graphs. The concept of k-11-representable graphs was �rst studied by Cheon et al.

[2].

While not all graphs are word-representable, all graphs are known to be 2-11-representable [2].

The most intriguing open question in the theory of k-11-representable graphs is whether all graphs

are 1-11-representable, and it remains challenging to predict an answer to this question. Recent

research in this area has focused on developing powerful tools to study 1-11-representable graphs [3];

see Subsection 2.2.

1.1. Our main results and the organization of the paper

In Section 2, we introduce the necessary de�nitions and known results that will be used throughout

this paper. In Section 3, we prove that all graphs with at most 8 vertices are 1-11-representable,

thereby extending the previously known result that all graphs with at most 7 vertices are 1-11-

representable [2, 3]. In Section 4, we introduce the concept of the multi-k-11-representation number

of a graph, which generalizes the notion of the multi-word-representation number of a graph [5].

As an application of our main results in this paper, in Section 4, we demonstrate that all graphs

with at most 24 vertices have a multi-1-11-representation number of at most 2. Finally, in Section 5,

we provide concluding remarks and outline open problems.

2. Preliminaries

An orientation of a graph is transitive, if the presence of the edges u → v and v → z implies the

presence of the edge u → z. An undirected graph G is a comparability graph if G admits a transitive

orientation.

2.1. Word-representable graphs and semi-transitive orientations

Two letters x and y alternate in a word w if, after deleting all letters in w except for x and y, we

obtain either the word xyxy · · · or yxyx · · · (of even or odd length). A graph G = (V,E) is word-

representable if and only if there exists a word w over the alphabet V such that letters x and y, with

x ̸= y, alternate in w if and only if xy ∈ E. The word w is called a word-representant for G.

The unique minimum (by the number of vertices) non-word-representable graph with 6 vertices is

the wheel graph W5. Moreover, there are 25 non-word-representable graphs on 7 vertices. Notably,

the original list of 25 non-word-representable graphs with 7 vertices, as presented in [6], contains two

incorrect graphs. For the corrected catalog of these 25 graphs, we refer the reader to [8].

An orientation of a graph is semi-transitive if it is acyclic, and for any directed path v0 → v1 →
· · · → vk either there is no edge from v0 to vk, or vi → vj is an edge for all 0 ≤ i < j ≤ k. An induced

subgraph on at least four vertices {v0, v1, . . . , vk} of an oriented graph is a shortcut if it is acyclic,

non-transitive, and contains both the directed path v0 → v1 → · · · → vk and the edge v0 → vk, that
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is called the shortcutting edge. A semi-transitive orientation can then be alternatively de�ned as an

acyclic shortcut-free orientation. A fundamental result in the area of word-representable graphs is

the following theorem.

Theorem 2.1 ([4]). A graph is word-representable if and only if it admits a semi-transitive orien-

tation.

For instance, it follows from Theorem 2.1 that every 3-colourable graph is word-representable

(simply direct each edge from a lower colour to a higher one). In the literature, word-representable

graphs are often referred to as semi-transitive graphs.

2.2. k-11-representable graphs

A factor in a word w1w2 . . . wn is a word wiwi+1 . . . wj for 1 ≤ i ≤ j ≤ n. For any word w, let π(w)

be the initial permutation of w obtained by reading w from left to right and recording the leftmost

occurrences of the letters in w. Denote by r(w) the reverse of w, that is, w written in the reverse

order. Finally, for a pair of letters x and y in a word w, let w|{x,y} be the subword induced by the

letters x and y. For example, if w = 42535214421 then π(w) = 42531, r(w) = 12441253524, and

w|{4,5}= 45544.

Let k ≥ 0. A graph G = (V,E) is k-11-representable if there exists a word w over the alphabet

V such that the word w|{x,y} contains in total at most k occurrences of the factors in {xx, yy}
if and only if xy is an edge in E. Such a word w is called G's k-11-representant. Note that 0-

11-representable graphs are precisely word-representable graphs, and that 0-11-representants are

precisely word-representants. A graph G = (V,E) is permutationally k-11-representable if it has a

k-11-representant that is a concatenation of permutations of V . The �11� in �k-11-representable�

refers to counting occurrences of the consecutive pattern 11 in the word induced by a pair of letters

{x, y}, which is exactly the total number of occurrences of the factors in {xx, yy}.
A uniform (resp., t-uniform) representant of a graph G is a word, satisfying the required properties,

in which each letter occurs the same (resp., t) number of times. It is known that each word-

representable graph has a uniform representant [7], the class of 2-uniform representable graphs is

exactly the class of circle graphs [6], while the class of 2-uniform 1-11-representable graphs is the

class of interval graphs [2]. The main result in [2] is the following theorem.

Theorem 2.2 ([2]). Every graph G is permutationally 2-11-representable.

Thus, when determining whether each graph is k-11-representable for a �xed k, the only case left

to study is k = 1 (as the answer is no for k = 0 and yes for k ≥ 2).

2.3. Known tools to study 1-11-representable graphs

Each word-representable graph is 1-11-representable. Indeed, if w is a word-representant of G then,

for instance, ww or r(π(w))w are its 1-11-representants. Moreover, each graph on at most 7 vertices

is 1-11-representable [2, 3]. The key tools to study 1-11-representation of graphs from [2, 3] can be

uni�ed as follows.

Lemma 2.3 ([2]). (a) Let G1 and G2 be 1-11-representable graphs. Then their disjoint union, glueing

them in a vertex or connecting them by an edge results in a 1-11-representable graph.
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(b) If G is 1-11-representable then for any edge xy adding a new vertex adjacent to x and y only,

gives a 1-11-representable graph.

In the following lemma, NA(v) = {u ∈ A | uv ∈ E(G)}.

Lemma 2.4 ([2]). Let G be a word-representable graph, A ⊆ V and v ∈ V . Then

(a) G \ {xy ∈ E(G) | x, y ∈ A} is a 1-11-representable graph;

(b) G \ {uv ∈ E(G) | u ∈ NA(v)} is a 1-11-representable graph.

In particular, Lemma 2.4(b) is frequently referred to in this paper as the �star operation� or �adding

a star�, and it is used as follows: to prove the 1-11-representability of a given graph, we identify a set

of new edges, all sharing the same vertex as an endpoint, and demonstrate that the resulting graph

is word-representable.

Lemma 2.5 ([2]). Let G be a graph with a vertex v ∈ V . G is 1-11-representable if at least one of

the following conditions holds:

(a) G \ v is a comparability graph;

(b) G \ v is a circle graph.

Lemma 2.6 ([3]). Let V1, . . . , Vk be pairwise disjoint subsets of V , the set of vertices of a word-

representable graph G. We denote by E(Vi) the set of all edges of G having both end-points in Vi.

Then, the graph H = G\(∪1≤i≤kE(Vi)), obtained by removing all edges belonging to E(Vi) for all

1 ≤ i ≤ k, is 1-11-representable.

As a corollary of Lemma 2.6, we obtain the following lemma, which is frequently used in this paper

and referred to as �adding a matching� or �applying a matching operation�.

Lemma 2.7 ([3]). Let the graph G be obtained from a graph H by adding a matching (that is, by

adding new edges no pair of which shares a vertex). If G is word-representable then H is 1-11-

representable.

Lemma 2.8 ([3]). Suppose that the vertices of a graph G can be partitioned into a comparability graph

formed by vertices in A = {a1, . . . , ak} and an independent set formed by vertices in B = {b1, . . . , bℓ}.
Then G is permutationally 1-11-representable.

3. Graphs on at most 8 vertices

In what follows, χ(G) denotes the chromatic number of G. We say that a graph is (a1, a2, . . . , ak)-

colourable if it can be coloured with k colours, but not with k − 1 colours, and the i-th colour class,

corresponding to colour i, is the set Vi = {vi, v′i, v′′i , . . .} of size ai. Our typical assumption, w.l.o.g.,

is that a1 ≥ a2 ≥ · · · ≥ ak. However, in certain cases, we deviate from this assumption to be able to

facilitate our arguments.

Remark 3.1. It is easy to see that the induced subgraph G[∪ai=1Vi] is a clique.

De�nition 3.2. A (b1b2 . . . bm)-shortcut is a shortcut with the directed path wb1 → wb2 → · · · → wbm ,
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where wbi ∈ Vi for 1 ≤ i ≤ m. A (b1b2 . . . bs�)-shortcut is any (c1c2 . . . ct)-shortcut such that bi = ci,

for i ∈ {1, 2 . . . , s}, and t ≥ s.

For sets of vertices X and Y in a graph, let e(X, Y ) denote the number of (directed or undirected)

edges between X and Y . For brevity, a singleton set {x} is denoted as x. Additionally, for a graph

G with disjoint subsets of vertices V1, . . . , Vm, where Vi is an independent set for 1 ≤ i ≤ m, let

G[V1, . . . , Vm] represent the induced m-partite subgraph of G on the vertices in ∪1≤i≤mVi. Finally,

a split graph is a graph whose vertex set can be partitioned into a comparability graph and an

independent set.

Lemma 3.3. If a graph G is (k, 1, 1, . . . , 1)-colourable, then G is 1-11-representable.

Proof. Clearly, G is a split graph with an independent set of size k, and by Theorem 6 in [3], any

split graph is permutationally 1-11-representable.

Lemma 3.4. For an (a1, a2, . . . , ak)-colourable graph G, where a1 ≥ a2 ≥ · · · ≥ ai > ai+1 = ai+2 =

· · · = ak = 1, if e(Vs, Vt) = 1 for some s ≤ i < t, then the vertex in Vt and its unique neighbour in Vs

are adjacent to all vertices in Vj for j > i.

Proof. Assume that Vt = {vt} is adjacent to a vertex vs ∈ Vs. Since at = 1, by Remark 3.1, the

claim holds for vt. Now, suppose that vs is not adjacent to some vℓ ∈ Vℓ for ℓ > i. By recolouring

the vertices in Vs\{vs} in colour t and the vertex vs in colour ℓ, we obtain a (k − 1)-colouring of G,

which contradicts the assumption that χ(G) = k. Therefore, vs must be adjacent to all vertices in

Vj for j > i.

The proof of the following theorem can be reduced to considering the 929 non-word-representable

graphs on 8 vertices ([6, p. 47]) since any word-representable graph is 1-11-representable. Our �nal

Section 5 contains an intriguing question about this. However, our arguments are not restricted to

the 929 graphs � we consider all graphs on 8 vertices based on their chromatic number and prove

their 1-11-representability.

Theorem 3.5. All graphs on at most 8 vertices are 1-11-representable.

Proof. We begin with the easier cases and continue with the more involved ones.

Case 1. χ(G) ≤ 3. Any such graph is word-representable and hence 1-11-representable.

Case 2. χ(G) = 8. This is a complete graph which is word-representable and hence 1-11-

representable.

Case 3. χ(G) = 7. By Lemma 3.3, G is word-representable, and hence 1-11-representable.

Our strategy for the remainder of the proof is to consider a suitable (a1, a2, . . . , ak)-colouring of

G. We then orient edges uv, where u ∈ Vi and v ∈ Vj with i < j, as u → v. Next, we apply a star or

a matching operation to add additional edges, oriented again from smaller colour to larger colours,

to eliminate potential shortcuts. This process ensures a semi-transitive orientation, demonstrating

that the resulting graph is word-representable and, consequently, that the original graph is 1-11-

representable.

Case 4. χ(G) = 6. Then G is either (3, 1, 1, 1, 1, 1)-colourable or (2, 2, 1, 1, 1, 1)-colourable. By

Lemma 3.3, we can assume that G is (2, 2, 1, 1, 1, 1)-colourable, with its vertices coloured as shown
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in the picture below. No edges are drawn in the picture (as is the case with all the pictures below),

and, in particular, the vertices in C = {v3, v4, v5, v6} form a clique. In the picture, colours 1 to 6

correspond to red, blue, green, orange, yellow, and black, respectively.

v1

v′1

v2

v′2

v3 v4 v5 v6

Suppose that v1 is not adjacent to a vertex in C. W.l.o.g., assume that v1v3 is not an edge. Clearly,

v′1v3 is an edge; otherwise, v3 can be coloured red, contradicting χ(G) = 6. But then, by Lemma 3.4,

v′1 is adjacent to every vertex in C.

The considerations above can also be applied to v2 and v′2 instead of v1 and v′1. By renaming v1
(resp., v2) and v′1 (resp., v

′
2), if necessary, we can assume that both v1 and v2 are adjacent to all ver-

tices in C. Add any missing edges between v′1 and the vertices in C to obtain a graph G′, and rename

the vertices in C, if necessary, so that the neighbours of v′2 in C are in the set C ′ = {vi, vi+1, . . . , v6}
for 3 ≤ i ≤ 7 (note that C ′ may be empty). Finally, orient the edges in G′ as vi → vj and v′i → vj,

for 1 ≤ i < j ≤ 6, and v1 → v′2 and v′1 → v′2 (if any of these edges exists). It is easy to check

that the obtained orientation is semi-transitive (in fact, transitive), so by Theorem 2.1, G′ is word-

representable, and by Lemma 2.4(b), G is 1-11-representable.

Case 5. χ(G) = 5. The only possible shortcuts in this graph are (12345)-, (1234)-, (1235)-, (1245)-,

(1345)-, or (2345)-shortcuts and possible missing edges appear only in G[V1, V3], G[V1, V4], G[V2, V4],

G[V2, V5], G[V3, V5].

G is (4, 1, 1, 1, 1)-, (3, 2, 1, 1, 1)-, or (2, 2, 2, 1, 1)-colourable. By Lemma 3.3, we can assume that G

is not (4, 1, 1, 1, 1)-colourable.

If G is (2, 1, 1, 1, 3)-colourable as in the picture below, which is equivalent to G being (3, 2, 1, 1, 1)-

colourable, then G[{v2, v3, v4}] is a triangle; e(Vi, vj) ≥ 1 for i = 1, 5 and j = 2, 3, 4 or else we can

recolour some vertex in {v2, v3, v4} and obtain a 4-colouring of G, which is impossible; e(v1, V5) ≥ 1

and e(v′1, V5) ≥ 1, and hence e(V1, V5) ≥ 2, or we can recolour some vertices and get a (4,1,1,1,1)-

colouring.

v5
v′5
v′′5

v1

v′1
v2 v3 v4

We �rst prove the following fact, which will be used multiple times below: if there are at least two

vertices among v2, v3, v4 that have only one neighbour in V5, then G is 1-11-representable. W.l.o.g.,

we assume e(v3, V5) = e(v4, V5) = 1 and v3v5 ∈ E(G). By Lemma 3.4, v5 is adjacent to v2, v3, and v4.

Now, by adding all edges in G[V1, v3] and G[V1, v4], we add at most two edges, which can only result

from applying a star or matching operation. By Lemma 2.4 or Lemma 2.7, we claim that there is

no shortcut now, so the original graph G is 1-11-representable. Indeed, possible (12345)-, (1345)-,

(1235)-, (1245)-, or (2345)-shortcuts must end with edge v3v5 or v4v5, but G[V1, V3], G[V1, V4], and

G[V2, V4] are complete bipartite and v2v5, v3v5 ∈ E(G). Moreover, (1234)-shortcuts do not exist

because G[V1, V3] and G[V2, V4] are complete bipartite. Therefore, the orientation is indeed semi-

transitive, and G is indeed 1-11-representable. Hence, in the rest of the proof, we may assume that

there are at least two vertices among v2, v3, v4 that have more than one neighbours in V5.
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Now, let us discuss the di�erent cases based on the possible values of e(V1, vi), where i ∈ {2, 3, 4}.
Consider the multiset {e(V1, vi)|i ∈ {2, 3, 4}}. Let κ be the number of occurrences of 1 in this

multiset. We consider four cases.

i) κ = 0, which means e(V1, vi) = 2 for i = 2, 3, 4. We can assume that e(v2, V5) = e(V2, V5) ≥ 2

and e(v3, V5) = e(V3, V5) ≥ 2 as stated before. By adding at most two edges we can make G[V2, V5]

and G[V3, V5] complete bipartite. Note that G[V1, V3], G[V1, V4], and G[V2, V4] are already complete

bipartite, so there is no shortcut in the above orientation and G is 1-11-representable.

ii) κ = 1. By recolouring v3, v4, v5, if necessary, we can assume that e(V1, v2) = 1, e(V1, v3) = 2,

e(V1, v4) = 2 and v1v2 ∈ E(G). By symmetry, we can assume that e(v2, V5) ≥ e(v1, V5) (if not,

swap v1 and v2). We can add to G, by a matching or star operation, edge v2v5 (resp., v2v
′
5, v2v

′′
5)

if v1v5 (resp., v1v
′
5, v1v

′′
5) is an edge in E, and edges {v3v5, v3v′5, v3v′′5}. In fact, we need to add at

most two edges because e(v2, V5) ≥ e(v1, V5) and e(v3, V5) ≥ 2. We claim that then there is no

shortcut in the above orientation: (12�)-shortcuts must start with v1v2, but NV5(v1) ⊆ NV5(v2) and

G[v1, V3], G[v1, V4], G[V2, V4], and G[V3, V5] are complete bipartite so there is no such shortcut; (1345),

(2345)-shortcuts do not exist because G[V1, V4], G[V3, V5], and G[V2, V4] are complete bipartite.

iii) κ = 2. By recolouring v3, v4, v5, if necessary, we can assume that e(V1, v2) = 1, e(V1, v3) =

1, e(V1, v4) = 2. Note that earlier we assumed that there are at least two vertices among v2, v3, v4
that have more than one neighbour in V5. Therefore, by symmetry, we can further assume that

e(v3, V5) ≥ 2.

Similarly to the above, we assume that v1v2 ∈ E(G) then v1v3, v1v4 ∈ E(G). By symmetry, we

assume that e(v2, V5) ≥ e(v1, V5). We can add at most one edge to ensure NV5(v1) ⊆ NV5(v2), and

then add at most one additional edge to ensure that G[V3, V5] is complete bipartite. Now there is no

shortcut.

iv) κ = 3, which means that e(V1, vi) = 1 for i = 2, 3, 4. We assume v1v2 ∈ E(G) then v1v3, v1v4 ∈
E(G). By symmetry, we assume e(v2, V5) ≥ e(v1, V5). Using the same method as in Case iii), we get

a semi-transitive orientation by adding at most 2 edges, which means G is 1-11-representable.

If G is (2, 1, 1, 2, 2)-colourable as shown in the picture below, we can assume that G[V1, V4],

G[V1, V5], and G[V4, V5] all have perfect matchings. Otherwise, we can recolour some vertices to

obtain a (3, 2, 1, 1, 1)-colouring.

v1

v′1

v2 v3

v4

v′4

v5

v′5

For i ∈ {2, 3}, let f(i) = (e(V1, vi), e(vi, V4), e(vi, V5)). Then f(i) ∈ {1, 2}3.
First we assume that there are di�erent s, t ∈ {1, 4, 5}, such that e(Vs, v2) = e(Vt, v2) = e(Vs, v3) =

e(Vt, v3) = 1. By symmetry we can assume s = 1, t = 4. That is, e(V1, v2) = e(V1, v3) = e(v2, V4) =

e(v3, V4) = 1. By Lemma 3.4, we can assume that v1v2, v1v3, v2v4, v3v4 ∈ E(G). Now we see that

v1v4 ∈ E(G), or we can recolour v1 and v4 green, recolour v2 red, recolour v3 yellow and get a 4-

colouring, contradiction. By adding at most two edges we can make G[V2, V5] and G[V3, V5] complete

bipartite. We claim that then there is no shortcut in the above orientation and the original is

1-11-representable. Indeed, (1�)-shortcuts must start from v1v2 → v2v3 → v3v4, v1v3 → v3v4 or

v1v2 → v2v4, but v1v3, v1v4, v2v4 ∈ G, NV4(v3) = {v4} ⊆ NV4(v1) and G[V2, V5] and G[V3, V5] are

complete bipartite, so no such shortcut exists.

Let ki be the number of 2 in the triple f(i) for i = 2, 3. Now, let us discuss the di�erent cases

based on the possible values of κ = max{k1, k2}. First note that κ ≥ 1, otherwise we can �nd two
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di�erent s, t ∈ {1, 4, 5}, such that e(Vs, v2) = e(Vt, v2) = e(Vs, v3) = e(Vt, v3) = 1.

i) κ = 3 and f(i) ̸= (1, 1, 1) for i = 2, 3. Then by symmetry we can assume e(v2, V4) = e(v2, V5) =

e(v3, V1) = 2. Then we can add a matching to make G[V1, V4] and G[V3, V5] complete bipartite. But

G[V1, V3], G[V2, V4], and G[V2, V5] are already complete bipartite, so there is no shortcut in the above

orientation and the original graph is 1-11-representable.

ii) κ = 2. By symmetry we can assume e(V1, v2) = 1, e(v2, V4) = e(v3, V5) = 2. By Lemma 3.4, we

can assume v1v2, v1v3 ∈ E(G). After adding all edges in G[V1, V4] we add at most a matching or we

can recolour some vertices and get a (3,2,1,1,1)-colouring or a 4-colouring. We claim that then there

is no shortcut in the above orientation and the original is 1-11-representable: G[V1, V4], G[V3, V5],

G[V2, V4], and G[V2, V5] are complete bipartite, and shortcuts G[V1, V3] are (123�)-shortcuts, which

starts from v1v2, v2v3, but v1v3 ∈ E(G) so no such shortcut exists.

iii) κ = 1. By the above discussion, there are no di�erent s, t ∈ {1, 4, 5}, such that e(Vs, v2) =

e(Vt, v3) = e(Vs, v2) = e(Vt, v3) = 1. Thus by symmetry, we can assume that e(V1, v2) = e(v2, V4) =

e(v3, V4) = e(v3, V5) = 1 and e(v2, V5) = e(V1, v3) = 2. Then also by symmetry and Lemma 3.4 we can

assume that v1v2, v2v4, v3v4, v3v5 ∈ E(G). By adding at most a matching (or we can get a (3,2,1,1,1)-

colouring or a 4 colouring) we can make G[V1, V4] and G[V3, V5] complete bipartite. We claim that

then there is no shortcut in the above orientation and the original graph is 1-11-representable: (12�

)-shortcuts must start from v1v2 → v2v3 → v3v4 or v1v2 → v2v4, but v1v3, v2v4 ∈ E(G) and G[V1, V4],

G[V2, V5], and G[V3, V5] are complete bipartite, so no such shortcut exists; (1345)-shortcuts do not

exist because G[V1, V4] and G[V3, V5] are complete; (2345)-shortcuts must start from v2v3 → v3v4,

and so it's easy to see that no such shortcuts exists.

iv) The only remained case is that κ = 3, but there is some i ∈ {2, 3}, such that f(i) = (1, 1, 1).

By symmetry, we can assume e(v2, Vi) = 1, e(v3, Vi) = 2 for i ∈ {1, 4, 5}. Further, by symmetry we

can assume v1v2, v2v4, v2v5 ∈ E(G).

We claim that e(v1, V4) = e(v1, V5) = e(v4, V1) = e(v4, V5) = e(v5.V1) = e(v5, V4) = 1. Otherwise,

for example, e(v1, V4) = 2. Then we can change the colour of vi and v2 to get a new (2, 1, 1, 2, 2)-

colouring. In this colouring, the triples f(2), f(3) satisfy the condition we have discussed before.

Again, we claim that G[{v1, v4, v5}] is not the empty graph. Otherwise we recolour v1, v4, v5 red and

recolour v′1, v2 green, and we get a (3,2,1,1,1)-colouring. Without loss of generality, we can assume

v1v5 ∈ E(G). Since e(v1, V5) = e(v5, V1) = 1, we see that v1v
′
5, v

′
1v5 /∈ E(G). Then we can change the

colour of v1, v5 and get a new (2, 1, 1, 2, 2)-colouring. In this colouring, the triples f(2), f(3) again

satisfy the condition we have discussed before.

Case 6. χ(G) = 4. The only shortcuts in this graph are only (1234)-shortcuts and possible missing

edges appear only in G[V1, V3], G[V2, V4].

If G is (5, 1, 1, 1)-colourable then, by Lemma 3.3, G is 1-11-representable.

If G is (4, 2, 1, 1)-colourable as in the picture below, we can assume e(V2, v3) ≤ e(V2, v4) by sym-

metry. If e(V2, v4) = 2, we can add all edges in G[V1, v3] by adding at most a star subgraph. Then

G[V1, V3] and G[V2, V4] are complete bipartite and there is no shortcut in the above orientation. So

the original graph is 1-11-representable. If e(V2, v3) = e(V2, v4) = 1, by Lemma 3.4, we can assume

v2v3, v2v4 ∈ E(G). Then still we add all edges in G[V1, v3] by adding at most a star subgraph and

there is no shortcut in the above orientation. Indeed, a (1234)-shortcut must end with v2v3 and v3v4,

but G[V1, V3] and G[v2, V4] are complete bipartite, which is a contradiction. So, the original graph is

1-11-representable.
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v1
v′1
v′′1
v′′′1

v2

v′2

v3 v4

If G is (3, 3, 1, 1)-colourable as in the picture below, we see that e(Vi, Vj) ≥ 1 for i ∈ {1, 2}, j ∈
{3, 4}. If e(V2, v3) = 1, by Lemma 3.4 we can assume v2v3, v2v4 ∈ E(G). We can add all edges in

G[V1, v3] by adding at most a star subgraph and there is no shortcut in the above orientation. Indeed,

a (1234)-shortcut must end with v2v3 and v3v4, but G[V1, V3] and G[v2, V4] are complete bipartite,

which is a contradiction. So the original graph is 1-11-representable. Now by symmetry we can

assume e(Vi, Vj) ≥ 2 for i ∈ {1, 2}, j ∈ {3, 4}. Then, by adding at most two edges we can make

G[V1, V3] and G[V2, V4] complete bipartite and there is no shortcut in the above orientation. So the

original graph is 1-11-representable.

v1
v′1
v′′1

v2
v′2
v′′2

v3 v4

If G is (3, 2, 1, 2)-colourable as in the picture below, we can assume that G is not (3, 3, 1, 1)-

colourable, so we can add a matching into G[V2, V4] to make it a complete bipartite graph. If

e(V1, v3) ≥ 2, then we can add a matching into G to make G[V1, V3] and G[V2, V4] complete bipartite

graphs and then there is no shortcut under the above orientation, and so the original graph is

1-11-representable.

v1
v′1
v′′1

v2

v′2

v3

v4

v′4

Thus, we see that e(V1, v3) = 1. Then by swapping V2 and V3 we can assume E(V1, V2) = {v1v2}
as in the picture below. Note that e(v2, V3) ≥ 1, so by colouring v1 green and colouring v2 red (it is

still a proper colouring), we can assume e(v1, V3) ≥ 1. In this case, we can add a matching into G

to make G[v1, V3] and G[V2, V4] complete bipartite graphs and then there is no shortcut under the

above orientation: (1234)-shortcuts must start with v1v2, but G[v1, V3] and G[V2, V4] are complete

bipartite. So the original graph is 1-11-representable.

v1
v′1
v′′1

v2

v3

v′3

v4

v′4

If G is (2, 2, 2, 2)-colourable as in the picture below, we can assume that G is not (3, 2, 2, 1)-

colourable. Note that for any 1 ≤ i < j ≤ 4, we can add a matching to make G[Vi, Vj] a complete

bipartite graph, otherwise, there is a vertex v ∈ Vi∪Vj with no edge in G[Vi, Vj]. Then we can assume

v ∈ Vi and recolour it with the colour of Vj, thereby obtaining a (3, 2, 2, 1)-colouring. Thus, we can

add a matching into G to make G[V1, V3] and G[V2, V4] complete bipartite graphs. By adding this

vertex to the component, we will get a (3, 2, 2, 1)-colouring, contradiction. Thus there is no shortcut

under the above orientation, and so G is 1-11-representable.
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v1

v′1

v2

v′2

v3

v′3

v4

v′4

All cases have been considered; thus, the theorem is proved.

4. Multi-1-11-representation number of a graph

In this section, we generalize and extend the notion of the multi-word-representation number of a

graph, introduced in [5] by Kenkireth and Malhotra. The key idea involves using multiple words

over the same alphabet to represent di�erent graphs, and declaring that the union of these word-

representants represents the union of graphs.

De�nition 4.1. Suppose that the graphs G1, G2, . . . , Gm share the same vertex set, i.e., V (G1) =

· · · = V (Gm) = V and that the graphs G and G′ satisfy the following:

• V (G) = V and E(G) = ∪1≤i≤mE(Gi);

• V (G′) = V , E(G′) = ∪1≤i≤mE(Gi), and E(Gi) ∩ E(Gj) = ∅ for 1 ≤ i < j ≤ m.

Further assume that each Gi, 1 ≤ i ≤ m, is k-11-representable, and that m is minimal possible

value for G and G′. Then, we de�ne the (resp., strict) multi-k-11-representation number of G (resp.,

G′) to be m.

Note that, according to our terminology, the multi-word-representation number in [5] is precisely

the multi-0-11-representation number. Also, the strict version of the �multi-word representation

number� is introduced by us for the �rst time.

Since each graph is k-11-representable for k ≥ 2 (see [2]), the (strict) multi-k-11-representation

number of such a graph is 1. Hence, De�nition 4.1 is meaningful only in the case k ∈ {0, 1}. In

particular, unless it is proven that all graphs are 1-11-representable, establishing the (strict) multi-

k-11-representation number for graphs, or classes of graphs, remains an interesting and challenging

problem. Furthermore, note that the multi-1-11-representation number is clearly at most equal to

the strict multi-1-11-representation number.

Using the approach in [5] and applying our results from Section 3, we can prove the following

theorem.

Theorem 4.2. All graphs on at most 24 vertices have a strict multi-1-11-representation number of

at most 2.

Proof. Suppose G is a graph on 24 vertices (for smaller graphs, the statement will follow by the

hereditary nature of 1-11-representation). Consider an arbitrary partition of V (G) into three disjoint

subsets V1, V2, and V3, each containing 8 vertices. By Theorem 3.5, the graph G[Vi], i ∈ {1, 2, 3},
is 1-11-representable. Furthermore, by Lemma 2.3(a), the graph G′ := G[V1] ∪G[V2] ∪G[V3] can be

1-11-represented by a word w1.

Next, removing all edges within G[V1], G[V2], and G[V3] from G, we obtain a 3-colourable graph

G′′, which is word-representable and therefore 1-11-representable [2]. Thus, we can �nd a word w2

that 1-11-represents G′′.

Since V (G) = V (G′) = V (G′′), E(G) = E(G′) ∪ E(G′′), and E(G′) ∩ E(G′′) = ∅, the strict
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1-11-representation number of G is at most 2.

5. Concluding remarks

We conclude this paper with several open directions for future research:

• Are all 4-colourable graphs 1-11-representable? If this is the case, the result of Theorem 4.2 could

be immediately improved by replacing 24 with 32. Indeed, in the proof of that theorem, we could

partition the vertex set ofG into four sets, each containing 8 vertices, and use the 1-11-representability

of the 4-colourable G′′.

• If proving or disproving that all 4-colourable graphs are 1-11-representable proves too challenging,
one could instead address the same question for all planar graphs, a subclass of 4-colourable graphs.

• Assuming that proving or disproving that any graph is 1-11-representable remains infeasible with

existing tools, one could focus on proving or disproving that the (strict) multi-1-11-representation

number of any graph is at most 2. This question is likely easier, at least for various classes of graphs,

than proving 1-11-representability. It should also be more tractable than resolving the open problem

of whether the multi-word-representation number of any graph is at most 2 (since graphs can be

modi�ed by adding edges).

• The notions of strict and non-strict multi-k-11-representation numbers are equivalent for k ≥ 2.

What can be said about k ∈ 0, 1? Is it possible to construct any counterexamples in this case?

• De�nition 4.1 can, in fact, be re�ned to the ℓ-multi-k-11-representation number, where any

edge can belong to at most ℓ subgraphs. In this framework, the strict multi-k-11-representation

corresponds to the case ℓ = 1. Could such a re�nement lead to interesting results for k = 0 (word-

representation) or k = 1 (assuming not all graphs are 1-11-representable)?

• Finally, Herman Chen's experiments [1] suggest that the 1-11-representability of graphs on 8

vertices can be established by adding at most one new edge (each of the 929 non-word-representable

graphs can be converted into a word-representable graph by adding a single edge). However, our

arguments in Section 3 often rely on adding more than one edge. Is it possible to prove (not

computationally) that adding at most one edge is su�cient? Such a proof could lead to useful

techniques, for example, to establish the 1-11-representability of all graphs with 9 vertices (if they

are indeed 1-11-representable).
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