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abstract

The covering cover pebbling number, σ(G), of a graph G, is the smallest number such that some

distribution D ∈ K is reachable from every distribution starting with σ(G) (or more) pebbles on G,

where K is a set of covering distributions. In this paper, we determine the covering cover pebbling

number for two families of graphs those do not contain any cycles.

Keywords: pebbling number, covering set, acyclic graph

2020 Mathematics Subject Classi�cation: 05B40, 05C05, 05C70, 05C99.

1. Introduction

Pebbling, one of the latest evolutions in graph theory proposed by Lakarias and Saks, has been

the topic of vast investigation with signi�cant observations. Having Chung [2] as the forerunner

to familiarize pebbling into writings, many other authors too have developed this topic. Given

a connected graph G, distribute certain number of pebbles on its vertices in some con�guration.

Precisely, a con�guration on a graph G, is a function from V (G) to N ∪{0} representing a placement

of pebbles on G. The size of the con�guration is the total number of pebbles placed on the vertices.

A pebbling move is the removal of two pebbles from one vertex and the addition of one pebble to an

adjacent vertex. In (regular) pebbling, the target is selected and the aim is to move a pebble to the

target vertex. The minimum number of pebbles, such that regardless of their initial placement and

regardless of the target vertex, we can pebble that target vertex is called the pebbling number of G,

denoted by f(G). In cover pebbling, the aim is to cover all the vertices with at least one pebble,

when the pebbling process ends. The minimum number of pebbles required such that regardless of

their initial placement on G, there is a sequence of pebbling moves, at the end of which, every vertex
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has at least one pebble on it, is called the cover pebbling number of G. The following de�nitions are

stated from [3]:

De�nition 1.1. A distribution or con�guration D is a function D : V (G) −→ N where D(v)

represents the number of pebbles on the vertex v. Also, for every distribution D and every positive

integer, we de�ne tD as the distribution given by (tD)(v) = tD(v) for every vertex v in G.

De�nition 1.2. Given two distributions D′ and D′′ on a graph G, we say that D′′ contains D′ if

D′(v) ≤ D′′(v) for every vertex v ∈ V (G).

De�nition 1.3. Given two distributions D and D′ on a graph G, we say that D′ is reachable from D

if it is possible to use a sequence of pebbling moves to go from D to a distribution D′′ that contains

D.

De�nition 1.4. Let S be a set of distributions on a graph G. The pebbling number of S in G,

denoted π(G,S), is the smallest number such that every distribution D ∈ S is reachable from every

distribution that starts with π(G,S) (or more) pebbles on G.

We �nd similar de�nitions for the following concepts in [3]:

(i) pebbling number of a distribution D, i.e., π(G,D),

(ii) t-pebbling number of a vertex in G, i.e., πt(G, v),

(iii) t-pebbling number of a graph G, i.e., πt(G).

De�nition 1.5. In a distribution on a graph G, a vertex with D(v) ≥ 1 pebbles is called an occupied

vertex.

Now we are going to de�ne covering cover pebbling number of a graph G, using De�nition 1.2 and

De�nition 1.3. A set K ⊆ V (G) is a covering [1], if every edge of G has at least one end in K. The

concept of covering cover pebbling number was �rst introduced by Lourdusamy et al. [11], and they

determined the covering cover pebbling number for complete graphs, paths, wheel graphs, complete

r-partite graphs and binary trees in [11]. For more results on covering cover pebbling number, please

refer to [7, 8, 9, 11, 10, 4, 5, 6]. Let us now de�ne some speci�c distribution and set of distributions

that would be helpful in formulating De�nition 1.8.

De�nition 1.6. For a set K ⊆ V (G) and a vertex x ∈ V (G), we de�ne the distribution χK on G as

the function:

χK(x) =

{
1 if x ∈ K,

0 otherwise,

where the set K forms a covering for G.

De�nition 1.7. We also let K = {χK : K ⊆ V (G) is a covering set}. That is, K is the set of

covering distributions.

De�nition 1.8. The covering cover pebbling number, σ(G), of a graph G, is the smallest number

such that some distribution D ∈ K is reachable from every distribution starting with σ(G) (or more)
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pebbles on G.

Theorem 1.9. [11] For a Star graph Km,1 (m ≥ 2), σ(Km,1) = m.

Theorem 1.10. [11] σ(B0) = 1, σ(B1) = 2, σ(B2) = 12, σ(B3) = 86, σ(B4) = 634 and for n ≥ 2,

σ(Bn) = 2n−1 +

⌊n−3
2 ⌋∑

i=0

(
22i+1 +

n−2i−2∑
j=1

2j−122i+2j+1

)
+

⌊n
2 ⌋∑

k=1

2n−2k22n−2k+2 + 22⌊
n−1
2 ⌋+1.

2. The covering cover pebbling number for an m-ary tree

In this section, we are going to determine the covering cover pebbling number of an m-ary tree

(m ≥ 2), using De�nition 1.8.

De�nition 2.1. A complete m-ary tree, denoted by Mn, is a tree of height n with mi vertices at

distances i from the root. Each vertex of Mn has m children except for the set of mn vertices that

are at distance n away from the root, none of which have children. The root is denoted by Rn.

Obviously, σ(M0) = 1, and σ(M1) = m [11], since M0
∼= K1, the complete graph on one vertex,

and M1
∼= K1,m, the star graph on m+ 1 vertices.

Remark 2.2. Note that M2 has m−M1's as subtrees on it. We label them, as M11, M12, · · ·, M1m

and their corresponding roots are R11, R12, · · ·, R1m. So, in general, the complete m-ary tree Mn

has m−Mn−1's as subtrees on it and hence we label them as M(n−1)1, M(n−1)2, · · ·, M(n−1)m and we

denote their corresponding roots by R(n−1)1, R(n−1)2, · · ·, R(n−1)m. Let v be the rightmost bottom

vertex of Mn.

Lemma 2.3. We can send a pebble to Rn, the root of Mn, at a cost of at most 2n pebbles,

1) when n = 2 and there exists a M1i (1 ≤ i ≤ m), a subtree of M2, such that p(M1i) ≥ m+ 3,

2) when n = 3 and there exists a M2i (1 ≤ i ≤ m), a subtree of M3, such that p(M2i) ≥ m2 + 7m,

3) when n = 4 and there exists a M3i (1 ≤ i ≤ m), a subtree of M4, such that p(M3i) ≥
m3 + 31m2 − 24m+ 14.

Proof. 1). Let n = 2 and p(M1i) ≥ m + 3 for a subtree M1i of M2. If p(R1i) ≥ 2 or a vertex of

M1i −R1i has more than three pebbles or two verices of M1i −R1i contain at least two pebbles each

on them, then we can send one pebble to the root R2 of M2 easily at a cost of at most 4 pebbles. If

not, then p(M1i) ≤ 3 + (m− 1) = m+ 2 - a contradiction to our assumption.

2). Let n = 3 and p(M2i) ≥ m2 + 7m for a subtree M2i of M3. If p(R2i) ≥ 2 then clearly we can

move a pebble to R3. So assume that p(R2i) ≤ 1. Assume p(R2i) = 0 (otherwise,
⌈
m2+7m−1

m

⌉
≥ m+3

and hence we can move one more pebble to p(R2i) by (1)). Let p(R2i) = 0. Clearly any one of the

subtree of M2i must contain at least
⌈
m2+7m

m

⌉
≥ m + 7. By (1), we can move a pebble to R2i and

then the remaining number of pebbles on the subtree of M2i is at least m+ 3. Again by (1), we can

move another one pebble to R2i and hence we move a pebble to R3 using at most eight pebbles.

3). Let n = 4 and p(M3i) ≥ m3+31m2− 24m+14 for a subtree M3i of M4. If p(R3i) ≥ 2 then we

can move a pebble to R4. Assume p(R3i) = 0 (otherwise we are done). Then any one of the subtree
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of M3i must contain at least
⌈
m3+31m2−24m+14

m

⌉
≥ m2+31m−24. By (2), we can move a pebble (at a

cost of at most 16 pebbles) to R4 through R3i, since the subtree of M3i contains at least m
2+7m+8

pebbles.

Theorem 2.4. For the m-ary tree M2, σ(M2) = m2 + 7m− 6.

Proof. First, we place m2−m pebbles on the bottom vertices such that no m pebbles of which share

a parent and we did not put any pebbles on the vertex v. And then we place 8m− 7 pebbles on the

vertex v, then no distribution of K is reachable. Thus σ(M2) ≥ m2 + 7m− 6.

Now, consider the distribution of m2 + 7m − 6 pebbles on the vertices of M2. According to the

distributions of p(M2) pebbles, we can partite them into three cases.

Case 1. Let p(M1i) ≥ m for all 1 ≤ i ≤ m.

If p(R2) ≥ 1 then there exists a distribution of K which is reachable by our assumption and

σ(M1) = m. Let p(R2) = 0. Any one of the subtree, say M11, must contain at least
⌈
m2+7m−6

m

⌉
≥

m + 4 pebbles and hence we can move a pebble to R2 by Lemma 2.3 (1). The remaining number

of pebbles on M11 is at least m and thus there exists a distribution of K which is reachable by our

assumption and σ(M1) = m.

Case 2. Let p(M1i) ≤ m− 1 for all 1 ≤ i ≤ m.

Clearly p(R2) ≥ p(M2) − m(m − 1) = 8m − 7 ≥ 2m and hence we put one pebble each on the

vertices R11, R12, · · ·, R1m from the pebbles at R2. Thus, the distribution χ{R11,R12,···,R1m} of K is

reachable.

Case 3. Let p(M1i) ≤ m− 1 for some i.

Let h subtrees contain at most m− 1 pebbles each on them, where 1 ≤ h ≤ m− 1. We prove this

case by induction on h ≥ 1. Let h = 1, that is, only one subtree, say M1m, has at most m−1 pebbles

on it. So, our aim is to provide two pebbles to the root R2 from the subtrees those have totally at

least m2 + 6m− 5 pebbles, so that we can move one pebble to R1m. Clearly, any one of the subtree,

say M11, must contain at least
⌈
m2+6m−5

m−1

⌉
≥ m+ 8 and hence we can move two pebbles to R2 while

retaining m pebbles, by Lemma 2.3 (1). Thus, the distribution χ{K} ∪ χ{R1m} = χ{K∪R1m} of K is

reachable, where χ{K} is a distribution of K which is reachable from those subtrees having at least

m pebbles each on them and χ{R1m} is a reachable distribution of K for V (M1m) ∪ R2. So assume

the result is true for h ≤ m−2. Let h = m−1. WLOG, let M11 be the subtree that contains at least

m pebbles. Clearly, p(M11) ≥ p(M2)− (m− 1)(m− 1) ≥ 9m− 7. We have to retain m+ 1 pebbles

on M11 and thus M11 has 8m − 8 extra pebbles on it. Now, we need at most eight pebbles from

M11 to put one pebble on a root vertex, say R12 of the subtree M12 , by induction and by Lemma

2.3 (1). After using eight pebbles (at most) from M11, the remaining number of pebbles is at least

(m+1)+ 8(m− 2) and therefore we can move one pebble to every root vertex R1j (j ̸= 1, 2) of M1j

by induction and by Lemma 2.3 (1). Thus, M11 has at least m + 1 pebbles on it and hence we can

move one pebble to R11 easily. So the distribution χ{R11,R12,···,R1m} of K is reachable.

Thus σ(M2) ≤ m2 + 7m− 6.

Theorem 2.5. For the m-ary tree M3, σ(M3) = m3 + 31m2 − 24m+ 2.

Proof. First, we place m3 − m2 pebbles on the bottom vertices such that no m pebbles of which

share a parent and we did not put any pebbles on the vertex v. This leaves the rightmost bottom
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vertex v unpebbled; and then we place 32m2−24m+1 pebbles on the vertex v. Then no distribution

of K is reachable. Thus σ(M3) ≥ m3 + 31m2 − 24m+ 2.

Now, consider the distribution of m3 + 31m2 − 24m+ 2 pebbles on the vertices of M3. According

to the distributions of p(M3) pebbles, we can partite them into three cases.

Case 1. Let p(M2i) ≥ m2 + 7m− 6 for all 1 ≤ i ≤ m.

If p(R3) ≥ 1 then there exists a distribution χ{K∪R3} of K which is reachable by our assumption

and σ(M2) = m2+7m−7, where K ⊆
⋃m

i=1 V (M2i). Let p(R3) = 0. Any one of the subtree, say M21,

must contain at least
⌈
m3+31m2−24m+2

m

⌉
≥ m2+7m+2 pebbles and hence we can move a pebble to R3

by Lemma 2.3 (2). The remaining number of pebbles on M21 is at least m
2 + 7m− 6 and thus there

exists a distribution χ{K∪R3} of K which is reachable by our assumption and σ(M2) = m2+7m− 6,

where K ⊆
⋃m

i=1 V (M2i).

Case 2. Let p(M2i) ≤ m2 + 7m− 7 for all 1 ≤ i ≤ m.

Clearly p(R3) ≥ p(M3) −m(m2 + 7m − 7) = 24m2 − 17m + 2 ≥ 4m2 + 1 and hence we can put

2m pebbles each on the vertices R21, R22, · · ·, R2m from the pebbles at R3. Thus, the distribution

χ{R3∪K} of K is reachable, where K = {v : d(v,R3) = 2} ⊆
⋃m

i=1 V (M2i).

Case 3. Let p(M2i) ≤ m2 + 7m− 7 for some i.

Let h subtrees contain at most m2 + 7m − 7 pebbles each on them, where 1 ≤ h ≤ m − 1. We

prove this case by induction on h ≥ 1. Let h = 1, that is, only one subtree, say M2m, has at most

m2 + 7m − 7 pebbles on it. So, our aim is to provide 4m + 1 pebbles to the root R3 from the

subtrees M2i (i ̸= m), those have totally at least m3 + 30m2 − 31m − 5 pebbles, so that we can

move 2m pebbles to R2m from R3. Also, note that, any preexisting pebbles on R3 or any pebbles on

M2m other than the m(m − 1) pebbles on the bottom vertices of M2m, m − 1 pebbles each with a

di�erent parent, only make our strategy easier to implement, so assume that p(M2m) ≤ m(m − 1).

Clearly, any one of the subtree, say M21, must contain at least
⌈
m3+30m2−23m+2

m−1

⌉
≥ m2 + 30m− 23.

Let x ≥ 0 pebble(s) is/are sent by the other subtrees M2j j ̸= 1,m to the root R3 at a cost of

at most 8x pebbles by Lemma 2.3 (2). So, the remaining number of pebbles on M21 is at least

m3 + 30m2 − 23m + 2 − (m − 2)(m2 + 7m + 1) − 8x ≥ 25m2 − 10m + 4 − 8x, and hence we

can move 4m − x + 1 pebbles to the root R3 from the subtree M21, by Lemma 2.3 (1) & (2).

Assume the result is true for h ≤ m − 2. Let h = m − 1. WLOG, let M21 be the subtree that

has at least m2 + 7m − 6 pebbles. As we said earlier in this case, we also assume that the other

subtrees only contain at most m(m− 1) pebbles each on them. So, the subtree M21 contains at least

p(M3)− (m− 1)m(m− 1) ≥ 33m2 − 25m+2 pebbles and hence we can move 4m2 − 4m+1 pebbles

to the root R3 from the subtree M21, by applying induction and by Lemma 2.3 (1) & (2). Thus,

the distribution χ{R3∪K∪L} of K is reachable, where K = {v : d(v,R3) = 2} ⊆
⋃m

i=2 V (M2i) and

L ⊆ V (M21).

Thus σ(M3) ≤ m3 + 31m2 − 24m+ 2.

Theorem 2.6. For the m-ary tree M4, σ(M4) = m4 + 127m3 − 96m2 + 8m− 30.

Proof. First, we place m4−m3 pebbles on the bottom vertices such that no m pebbles of which share

a parent. This should leave the rightmost bottom vertex unpebbled; and then we place 128m3 −
96m2 + 8m − 31 pebbles on the vertex v. Then no distribution of K is reachable. Thus σ(M4) ≥
m4 + 127m3 − 96m2 + 8m− 30.

Now, consider the distribution of m4 + 127m3 − 96m2 + 8m − 30 pebbles on the vertices of M4.
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According to the distributions of p(M4) pebbles, we can partite them into three cases.

Case 1. Let p(M3i) ≥ m3 + 31m2 − 24m+ 2 for all 1 ≤ i ≤ m.

If p(R4) ≥ 1 then there exists a distribution χ{K∪R4} of K which is reachable by our assumption

and σ(M3) = m3+31m2−24m+2, where K ⊆
⋃m

i=1 V (M3i). Let p(R4) = 0. Any one of the subtree,

say M31, must contain at least⌈
m4 + 127m3 − 96m2 + 8m− 30

m

⌉
≥ m3 + 31m2 − 24m+ 18,

pebbles and hence we can move a pebble to R4 by Lemma 2.3 (3). The remaining number of pebbles

on M31 is at least m
3 + 31m2 − 24m+ 2 and thus there exists a distribution χ{K∪R4} of K which is

reachable by our assumption and σ(M3) = m3 + 31m2 − 24m+ 2, where K ⊆
⋃m

i=1 V (M3i).

Case 2. Let p(M3i) ≤ m3 + 31m2 − 24m+ 1 for all 1 ≤ i ≤ m.

Clearly p(R4) ≥ p(M4) − m(m3 + 31m2 − 24m + 1) ≥ 8m3 + 2m and hence we put 4m2 + 1

pebbles each on the vertices R31, R32, · · ·, R3m from the pebbles at R4. Thus, the distribution

χ{R31,R32,···,R3m∪K} of K is reachable, where K = {v : d(v,R4) = 3} ⊆
⋃m

i=1 V (M3i).

Case 3. Let p(M3i) ≤ m3 + 31m2 − 24m+ 1 for some i.

Let h subtrees contain at most m3+31m2− 24m+1 pebbles each on them, where 1 ≤ h ≤ m− 1.

We prove this case by induction on h ≥ 1. Let h = 1, that is, only one subtree, say M3m, has at most

m3+31m2−24m+1 pebbles on it. We have to send 8m2+1 pebbles to the root R4 from the subtrees

those have totally at least m4+126m3−127m2+32m−31 pebbles, so that we can move 4m2 pebbles

to R3m from R4. Also, note that, any preexixting pebbles on R4 or any pebbles on M3m other than

the m2(m−1) pebbles on the bottom vertices of M3m, m(m−1) pebbles each with a di�erent parent,

only make our strategy easier to implement, so assume that p(M3m) ≤ m2(m− 1). Clearly, any one

of the subtree, say M31, must contain at least
⌈
m4+126m3−95m2+8m−30

m−1

⌉
≥ m3 + 126m2 − 95m − 14.

Let x ≥ 0 pebble(s) is/are sent by the other subtrees M3j j ̸= 1,m, to the root R4 at a cost

of at most 16x pebbles by Lemma 2.3 (3). So, the remaining number of pebbles on M31 is at least

m4+126m3−95m2+8m−30−(m−2)(m3+31m2−24m+13)−16x ≥ 98m3−10m2−53m−4−16x,

and hence we can move 8m2 + 1 − x pebbles to the root R4 from the subtree M31, by Lemma 2.3

(3). Assume the result is true for h = l ≤ m − 2. Let h = m − 1. WLOG, let M31 be the subtree

that has at least m3 + 31m2 − 24m + 2 pebbles. As we said earlier in this case, we also assume

that the other subtrees only contain at most m2(m − 1) pebbles each on them. So, the subtree

M31 contains at least p(M4) − (m − 1)m2(m − 1) ≥ 129m3 − 97m2 + 8m − 30 pebbles and hence

we can move 8m3 − 8m2 pebbles to the root R4 and one pebble to R31 from the subtree M31, by

applying induction and by Lemma 2.3 (3). Thus, the distribution χK∪L∪M of K is reachable, where

K = {v : d(v,R4) = 3} ⊆
⋃m

i=2 V (M3i), L = {v : d(v,R4) = 1} and M ⊆ V (M31)− {R31}.
Thus σ(M4) ≤ m4 + 127m3 − 96m2 + 8m− 30.

Theorem 2.7. For n ≥ 2,

σ(Mn) =mn−1(m− 1) + (m− 1)

⌊n
2 ⌋∑

k=1

mn−2k22n−2k+1 + 22⌊
n−1
2 ⌋+1

+

⌊n−3
2 ⌋∑

i=0

(
22i+1 + (m− 1)

n−2i−2∑
j=1

mj−122i+2j+1

)
.
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Before proving the above theorem, we state a theorem below to prove Theorem 2.7, which is a

generalization of the Lemma 2.3.

Theorem 2.8. We can send a pebble to Rn, the root of Mn, at a cost of at most 2n pebbles, when

n = k (k ≥ 2) and there exists a M(n−1)i (1 ≤ i ≤ m), a subtree of Mn, such that p(M(n−1)i) ≥
σ(Mn−1) + 3(2n−2).

Proof. It can be easily proved by induction on k and using the Lemma 2.3.

Now, we are going to prove Theorem 2.7.

Proof of Theorem 2.7. Let

T (Mn) =mn−1(m− 1) + (m− 1)

⌊n
2 ⌋∑

k=1

mn−2k22n−2k+1 + 22⌊
n−1
2 ⌋+1

+

⌊n−3
2 ⌋∑

i=0

(
22i+1 + (m− 1)

n−2i−2∑
j=1

mj−122i+2j+1

)
.

We placemn−1(m−1) pebbles on the bottom verices such that nom pebbles of which share a parent.

This should leave the rightmost bottom vertex unpebbled; and then we place T (Mn)−mn−1(m−1)−1

pebbles on the vertex v. Then no distribution of K is reachable. Thus σ(Mn) ≥ T (Mn).

We now proceed to prove the upper bound by induction. Clearly, the result is true for n = 2, 3, 4 by

Thorem 2.4, 2.5 and 2.6. Consider the distribution of T (Mn) pebbles on the vertices of Mn (n ≥ 5).

According to the distributions of T (Mn) pebbles, we can partite them into three cases.

Case 1. Let p(M(n−1)i) ≥ T (Mn−1) for all 1 ≤ i ≤ m.

If p(Rn) ≥ 1 then there exists a distribution of K which is reachable by our assumption and

σ(Mn−1) = T (Mn−1). Let p(Rn) = 0. Any one of the subtree, say M(n−1)1, must contain at least⌈
T (Mn)

m

⌉
≥ T (Mn−1) + 2n pebbles and hence we can move a pebble to Rn by the Theorem 2.8. The

remaining number of pebbles on M(n−1)1 is at least T (Mn−1) and thus there exists a distribution of

K which is reachable by our assumption and σ(Mn−1) = T (Mn−1).

Case 2. Let p(M(n−1)i) ≤ T (Mn−1)− 1 for all 1 ≤ i ≤ m.

Clearly p(Rn) ≥ T (Mn) − m (T (Mn−1)− 1) ≥ m

⌊n
2 ⌋∑

k=1

mn−2k2n−2k+1

 + 1 and hence we put

⌊n
2 ⌋∑

k=1

mn−2k2n−2k pebbles each on the vertices R(n−1)1, R(n−1)2, · · ·, R(n−1)m from the pebbles at Rn.

From the pebbles on R(n−1)i, we move a pebble to every vertex in every second row, starting, in the

subtree M(n−1)i, with the row that is next to the bottom row. Thus, the distribution χ{K∪Rn} of K

is reachable, where K ⊆
⋃m

i=1 V (M(n−1)i).

Case 3. Let p(M(n−1)i) ≤ T (Mn−1)− 1 for some i.

Let h subtrees contain at most T (Mn−1) − 1 pebbles each on them, where 1 ≤ h ≤ m − 1. We

prove this case by induction on h ≥ 1. Let h = 1, that is, only one subtree, say M(n−1)m, has at

most T (Mn−1) − 1 pebbles on it. So, our aim is to provide

⌊n
2 ⌋∑

k=1

mn−2k2n−2k+1

 pebbles to the

root Rn from the subtrees those have totally at least T (Mn) − mn−2(m − 1) pebbles, so that we
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can move

⌊n
2 ⌋∑

k=1

mn−2k2n−2k

 pebbles to R(n−1)m. Clearly, any one of the subtree, say M(n−1)1, must

contain at least
⌈
T (Mn)−mn−2(m−1)

m−1

⌉
≥ T (Mn−1)+2n

⌊n
2 ⌋∑

k=1

mn−2k2n−2k+1 + 1

 and hence we can move⌊n
2 ⌋∑

k=1

mn−2k2n−2k+1

+1 pebbles to Rn while retaining T (Mn−1) pebbles, by the Theorem 2.8. Thus,

the distribution χ{K∪L∪Rn} of K is reachable, where χ{K} is a distribution of K which is reachable

from those subtrees having at least T (Mn−1) pebbles each on them, χ{L} is a reachable distribution

of K in M(n−1)m and χ{Rn} is a reachable distribution of K for the incident edges of Rn. So assume

the result is true for h = l ≤ m− 2. Let h = m− 1. WLOG, let M(n−1)1 be the subtree that contains

at least T (Mn−1) pebbles. Clearly, p(M(n−1)1) ≥ T (Mn)− (m− 1)mn−2(m− 1) ≥ T (Mn−1)+2n(m−

1)

⌊n
2 ⌋∑

k=1

mn−2k2n−2k+1

 + (m − 1)mn−2. We have to retain T (Mn−1) pebbles on M(n−1)1 and thus

M(n−1)1 has 2
n(m− 1)

⌊n
2 ⌋∑

k=1

mn−2k2n−2k+1

 extra pebbles on it. Now, we need at most 2n+1 pebbles

from M(n−1)1 to put one pebble on a root vertex, say R(n−1)2 of the subtree M(n−1)2 , by induction

and by the Theorem 2.8. After using at most 2n

⌊n
3 ⌋∑

k=1

mn−2k2n−2k+1

 pebbles from M(n−1)1, the

remaining number of pebbles is at least T (Mn−1) + 2n(m− 2)

⌊n
2 ⌋∑

k=1

mn−2k2n−2k+1

+ (m− 1)mn−2

and therefore we can move

⌊n
2 ⌋∑

k=1

mn−2k2n−2k

 pebbles to every root vertex R(n−1)j (j ̸= 1, 2) of

M(n−1)j by induction and by the Theorem 2.8. In this process, for even values of n, as we place

one pebble each on the root vertex R(n−1)j (for all j ̸= 1), the edges between Rn and R(n−1)j is also

covered. The edge between Rn and R(n−1)1 can also be covered as the root vertex R(n−1)1 can be

pebbled with at least T (Mn−1) = σ(Mn−1) on the vertices of M(n−1)1. For the case when n is odd, as

there are 2n extra pebbles (after covering all the edges of M(n−1)1), we can pebble the root vertex Rn

of Mn and thus the edge RnR(n−1)1 is also covered. So there exists a distribution of K is reachable.

Thus, σ(Mn) ≤ T (Mn).

Corollary 2.9. [11] σ(B0) = 1, σ(B1) = 2, σ(B2) = 12, σ(B3) = 86, σ(B4) = 634 and for n ≥ 2,

σ(Mn) = 2n−1 +

⌊n
2 ⌋∑

k=1

2n−2k22n−2k+1 + 22⌊
n−1
2 ⌋+1 +

⌊n−3
2 ⌋∑

i=0

(
22i+1 +

n−2i−2∑
j=1

2j−122i+2j+1

)
.

Proof. Let m = 2 in Theorem 2.7.
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3. The covering cover pebbling number for a caterpillar

In this section, we are going to determine the covering cover pebbling number of a caterpiller, using

De�nition 1.8.

De�nition 3.1. A tree T is called a caterpillar if the deletion of all pendent vertices of the tree

results in a path P
′
, the spine of the caterpillar T . For convenience, we shall call a path P with

maximum length which contains P
′
a body of the caterpillar, and all the edges which are incident to

pendent vertices are the legs of the caterpillar T . Furthermore, the vertex v ∈ V (P ) is a joint of T

provided that degT (v) ≥ 3 or v is adjacent to the end vertices.

In otherwords, a tree is said to be caterpillar i� all nodes of degree three or more are surrounded

by at most two nodes of degree two or greater.

Let C(n, s1, s2, s3, ..., sn) be the caterpillar tree T such that the spine P
′
: v1v2v3 · · · vn has n

vertices and let the vertex vi ∈ V (P
′
) has si ≥ 0 pendant vertices where 1 ≤ i ≤ n. Clearly s1 ≥ 1

and sn ≥ 1, and hence we label a vertex as v0 which is adjacent to v1 and label another vertex as

vn+1 which is adjacent to vn. Let I = {vi : si ≥ 2} where 1 ≤ i ≤ n and let J = {vj : sj = 1} where

1 ≤ j ≤ n. Let I ∪ J = {v1, vk, vl, · · · , vm, vn : 1 < k < l < · · · < m < n}.

Theorem 3.2. [11] For the path Pn (n ≥ 2), σ(Pn) =
⌈
2n−1
3

⌉
.

Theorem 3.3. For a caterpillar C(n, s1, s2, ..., sn), the covering cover pebbling number is equal to,

∑
va∈I∪J

2a −

{
1 if v2 ∈ I ∪ J or |P 1k

A |= 0( mod 2)

0 otherwise
+
∑

va∈I∪J

(sa − 1) +
∑

vb,vc∈I∪J

2b+1T (P bc
A ),

where vb and vc (b < c) are a pair of consecutive vertices in I ∪ J , and P bc
A : vb+1vb+2...vc−2vc−1 with

T (P bc
A ) = σ(Pd) if |P bc

A |= d ≥ 2 and 0 otherwise.

Proof. Let

p(C) =
∑

va∈I∪J
2a −

{
1 if v2 ∈ I ∪ J or |P 1k

A |= 0( mod 2)

0 otherwise
+

∑
va∈I∪J

(sa − 1) +
∑

vb,vc∈I∪J
2b+1T (P bc

A ).

First we place one pebble each on the si − 1 pendant vertices of vi ∈ I for all i, and place zero

pebbles on the pendant vertex of vj ∈ J for all j such that we do not place pebbles on v0. After

that we place p(C)−
∑

va∈I∪J
(sa − 1) pebbles on the vertex v0 and zero pebbles on the other vertices

of C(n, s1, s2, ..., sn). Thus no distribution of K is reachable and so σ(C(n, s1, s2, ..., sn)) ≥ p(C).

Now consider the distribution of p(C) pebbles on the vertices of C(n, s1, s2, ..., sn). Here our

strategy is to move one pebble each to the vertices belong to I ∪ J and we have to cover the edges

of in between vertices, for example vk and vl, of I ∪ J using the path P kl
A , if needed. Note that if

we have one pebble each at the si − 1 pendant vertices of vi ∈ I does not decrease the number of

pebbles needed for vi from the other vertex. If we add one more pebble to a pendant vertex of vi,

clearly all edges except vi−1vi and vivi+1 incident with the vertex vi is covered. We now prove that

a worst case scenario is indeed the one in which all the p(C) −
∑

va∈I∪J
(sa − 1) pebbles are in either

v0 or vn+1, �rst we let v0 be the vertex: Let C be a worst case con�guration that contains pebbles
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on P
′ ∪ {vn+1} ∪ {unpebbled pendant vertices} other than those on the above mentioned pendant

vertices. Then moving all of these to the vertex v0 would require us to use more pebbles to cover the

edges of C(n, s1, s2, ..., sn), a contradiction to the fact that C is a worst case con�guration. Also, as

noted before, removing single pebble from the pebbled pendant vertices does not lessen the covering

cover pebbling number starting at v0.

Now, we put one pebble each to the vertices of I ∪ J from v0 to cover the incident edge of the

unpebbled pendant vertices which are adjacent to some vertices of I ∪ J . Clearly, to achieve that

we need
∑

va∈I∪J
2a pebbles from v0. Let vk be the next vertex in I ∪ J after the vertex v1. We have

to cover the edges between the vertices v1 and vk in C(n, s1, s2, ..., sn). Clearly, we have covered

the incident edges of v1 and vk. Consider the path P 1k
A : v2v4 · · · vk−2vk−1. To cover the edges of

this P 1k
A path from the vertex v0, we need 23σ(Pd) pebbles if |P 1k

A |= d ≥ 2 and we don't need any

pebbles if |P 1k
A |≤ 1. We do the same procedure for other pairs of consecutive verices (vk, vl), · · ·,

(vm, vn) of I ∪ J . So, to cover the edges between the vertices of the pair of vertices of I ∪ J , we

need
∑

vb,vc∈I∪J
2b+1T (P bc

A ) pebbles from v0. Clearly, we are done using p(C) pebbles if v2 /∈ I ∪ J and

|P 1k
A |≠ 0( mod 2). Suppose v2 ∈ I ∪ J or |P 1k

A |= 0( mod 2), then we remove the single pebble at v1
and put one pebble at v0. So we subtract one pebble for the case v2 ∈ I ∪ J or |P 1k

A |= 0( mod 2).

Thus we have covered all the edges of C(n, s1, s2, ..., sn) using p(C) pebbles.

We relabel the vertices vn+1, vn, · · · , v1, v0 by v0, v1, · · · , vn, vn+1 respectively and then we do the

same thing as we did above. Finally choose the one (before relabeling or after relabeling) having

maximum amount of pebbles with it will be the covering cover pebbling number for C(n, s1, s2, ..., sn).

For our convenience, we take p(C) = T11 + T12 + T13, where

T11 =
∑

va∈I∪J

2a −

{
1 if v2 ∈ I ∪ J or |P 1k

A |= 0( mod 2),

0 otherwise,

T12 =
∑

vb,vc∈I∪J

2b+1T (P bc
A ),

and

T13 =
∑

va∈I∪J

(sa − 1).

Theorem 3.4. For the path Pn (n ≥ 4),

σ(Pn) = 2n−2 + 4σ(Pn−4) + 2−

{
1 if |P 1(n−2)

A |= 0( mod 2),

0 otherwise.

Proof. Let Pn : v0v1 · · · vn−1. Clearly, I = ∅ and J = {v1, vn−2}, so s1 = 1, sn−2 = 1 and I ∪ J =

{v1, vn−2}. Then P
1(n−2)
A : v2 · · · vn−3. Now we are going to apply Thorem 3.3.

Case 1. |P 1(n−2)
A |= 0(mod 2).

T11 =(2 + 2n−2)− 1 = 2 + 2n−2 − 1,

T12 =22T
(
P

1(n−2)
A

)
= 4σ(Pn−4),
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and

T13 = (s1 − 1) + (sn−2 − 1) = 0.

Thus σ(Pn) = 2n−2 + 4σ(Pn−4) + 1.

Case 2. |P 1(n−2)
A |≠ 0(mod 2).

T11 = 2 + 2n−2, T12 = 4σ(Pn−4) and T13 = 0. Thus σ(Pn) = 2n−2 + 4σ(Pn−4) + 2.

De�nition 3.5. A graph is called Double Star-Path(DSP) if the end vertices of a path P : v1v2 · · · vn
on n vertices adjoint to the center vertices of the star graphs K1,l (l ≥ 2) and K1,m (m ≥ 2)

respectively. We denote it by Pn(l,m).

Corollary 3.6. For the graph Double Star-Path Pn(l,m),

σ(Pn(l,m)) = 2n + 4σ(Pn−2) + l +m−

{
1 if |P 1n

A |= 0( mod 2),

0 otherwise,

where P 1n
A : v2v3 · · · vn−1 (n ≥ 4). Note that, we let σ(Pn−2) = 0 if n ≤ 3.

Proof. Let Pn+2 : v0v1 · · · vn+1. Clearly, I = {v1, vn} and J = ∅, so s1 = l, sn = m and I ∪ J =

{v1, vn}. Then P 1n
A : v2 · · · vn−1. Now we are going to apply Thorem 3.3.

Case 1. |P 1n
A |= 0(mod 2).

T11 =2 + 2n − 1,

T12 =22T
(
P 1n
A

)
= 4σ(Pn−2),

and

T13 = (s1 − 1) + (sn − 1) = l +m− 2.

Thus σ(Pn(l,m)) = 2n + 4σ(Pn−2) + l +m− 1.

Case 2. |P 1(n−2)
A |≠ 0(mod 2).

T11 = 2 + 2n, T12 = 4σ(Pn−2) and T13 = l +m− 2.

Thus σ(Pn(l,m)) = 2n + 4σ(Pn−2) + l +m.

De�nition 3.7. The class of fuses is de�ned as follows: the vertices of a Fuse Fl(k) (l ≥ 1 and

k ≥ 2)are v0v1, v2, · · · , vn−1 with n = l + k + 1, so that the �rst l + 1 vertices form a path from

v0v1, v2, · · · , vl, and the remaining vertices vl+1, vl+2, · · · , vn−1 are independent and adjacent only to

vl. The path sometimes called the wick, while the remaining vertices are sometimes called the sparks.

For example, F1(k) is the star K1,k+1 on k + 2 vertices.

Corollary 3.8. For the Fuse graph Fl(k) (l ≥ 2), the covering cover pebbling number is equal to

2l + 4σ(Pl−2) + k + 1−

{
1 if |P 1l

A |= 0( mod 2),

0 otherwise.
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Proof. Let Pl+2 : v0v1 · · · vlvl+1. Clearly, I = {vl} and J = {v1}, so s1 = 1, sl = k and I∪J = {v1, vl}.
Then P 1l

A : v2 · · · vl−1. Now we are going to apply Theorem 3.3.

Case 1. |P 1l
A |= 0(mod 2).

T11 =2 + 2l − 1,

T12 =4σ(Pl−2),

and

T13 = k − 1.

Thus σ(Fl(k)) = 2l + 4σ(Pl−2) + k.

Case 2. |P 1l
A |≠ 0(mod 2).

T11 = 2 + 2l, T12 = 4σ(Pl−2) and T13 = k − 1.

Thus σ(Fl(k)) = 2l + 4σ(Pl−2) + k + 1.
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