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ABSTRACT

The covering cover pebbling number, o(G), of a graph G, is the smallest number such that some
distribution D € J¢ is reachable from every distribution starting with ¢(G) (or more) pebbles on G,
where J# is a set of covering distributions. In this paper, we determine the covering cover pebbling
number for two families of graphs those do not contain any cycles.
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1. Introduction

Pebbling, one of the latest evolutions in graph theory proposed by Lakarias and Saks, has been
the topic of vast investigation with significant observations. Having Chung [2] as the forerunner
to familiarize pebbling into writings, many other authors too have developed this topic. Given
a connected graph G, distribute certain number of pebbles on its vertices in some configuration.
Precisely, a configuration on a graph G, is a function from V(G) to N U{0} representing a placement
of pebbles on GG. The size of the configuration is the total number of pebbles placed on the vertices.
A pebbling move is the removal of two pebbles from one vertex and the addition of one pebble to an
adjacent vertex. In (regular) pebbling, the target is selected and the aim is to move a pebble to the
target vertex. The minimum number of pebbles, such that regardless of their initial placement and
regardless of the target vertex, we can pebble that target vertex is called the pebbling number of G,
denoted by f(G). In cover pebbling, the aim is to cover all the vertices with at least one pebble,
when the pebbling process ends. The minimum number of pebbles required such that regardless of
their initial placement on G, there is a sequence of pebbling moves, at the end of which, every vertex
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has at least one pebble on it, is called the cover pebbling number of G. The following definitions are
stated from [3]:

Definition 1.1. A distribution or configuration D is a function D : V(G) — N where D(v)
represents the number of pebbles on the vertex v. Also, for every distribution D and every positive
integer, we define tD as the distribution given by (¢D)(v) = tD(v) for every vertex v in G.

Definition 1.2. Given two distributions D’ and D” on a graph G, we say that D" contains D’ if
D'(v) < D"(v) for every vertex v € V(G).

Definition 1.3. Given two distributions D and D’ on a graph G, we say that D’ is reachable from D
if it is possible to use a sequence of pebbling moves to go from D to a distribution D" that contains
D.

Definition 1.4. Let S be a set of distributions on a graph G. The pebbling number of S in G,
denoted 7(G,S), is the smallest number such that every distribution D € S is reachable from every
distribution that starts with 7(G,S) (or more) pebbles on G.

We find similar definitions for the following concepts in [3]:
(i) pebbling number of a distribution D, i.e., 7(G, D),

(ii) t-pebbling number of a vertex in G, i.e., m(G,v),

(iii) t-pebbling number of a graph G, i.e., m(G).

Definition 1.5. In a distribution on a graph G, a vertex with D(v) > 1 pebbles is called an occupied
vertex.

Now we are going to define covering cover pebbling number of a graph G, using Definition 1.2 and
Definition 1.3. A set K C V(G) is a covering [1], if every edge of G has at least one end in K. The
concept of covering cover pebbling number was first introduced by Lourdusamy et al. [11], and they
determined the covering cover pebbling number for complete graphs, paths, wheel graphs, complete
r-partite graphs and binary trees in [11]. For more results on covering cover pebbling number, please

)]

refer to [7, 8, 9, 11, 10, 4, 5, 6]. Let us now define some specific distribution and set of distributions
that would be helpful in formulating Definition 1.8.

Definition 1.6. For a set K C V(G) and a vertex x € V(G), we define the distribution xx on G as
the function:

XK (T) =

1 ifzekK,
0 otherwise,

where the set K forms a covering for G.

Definition 1.7. We also let % = {xx : K C V(G) is a covering set}. That is, .# is the set of
covering distributions.

Definition 1.8. The covering cover pebbling number, o(G), of a graph G, is the smallest number
such that some distribution D € £ is reachable from every distribution starting with o(G) (or more)
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pebbles on G.
Theorem 1.9. [L1] For a Star graph K,,1 (m > 2), 0(Kp,1) = m.
Theorem 1.10. [11| o(By) =1, 0(By) =2, 0(By) = 12, 0(Bs) = 86, 0(B,) = 634 and for n > 2,

|52 ] n—2i—2 %]
o(B,) = on—1 4 Z (22i+1 4 Z 2j—1222’+2j+1> 4 Z2n—2k22n—2k+2 4 ta’%lj +1
i=0 j=1 k=1

2. The covering cover pebbling number for an m-ary tree

In this section, we are going to determine the covering cover pebbling number of an m-ary tree
(m > 2), using Definition 1.8.

Definition 2.1. A complete m-ary tree, denoted by M, is a tree of height n with m? vertices at
distances i from the root. Each vertex of M, has m children except for the set of m™ vertices that
are at distance n away from the root, none of which have children. The root is denoted by R,,.

Obviously, o(My) = 1, and o(M;) = m [11], since My = K;, the complete graph on one vertex,
and M; = K, ,,, the star graph on m + 1 vertices.

Remark 2.2. Note that Ms has m — M;’s as subtrees on it. We label them, as M1y, Mo, - -+, M1,

and their corresponding roots are Ry, Ris, -+, Rip. So, in general, the complete m-ary tree M,
has m — M,,_,’s as subtrees on it and hence we label them as M, _1)1, M(,—1)2, -+, M(n_1)m and we
denote their corresponding roots by R,—1)1, Rn-1)2, *-*, Rn-1)m- Let v be the rightmost bottom

vertex of M,,.

Lemma 2.3. We can send a pebble to R,,, the root of M,, at a cost of at most 2" pebbles,
1) when n =2 and there exists a My; (1 <i<m), a subtree of My, such that p(My;) > m + 3,
2) when n = 3 and there exists a My; (1 <1< m), a subtree of Mz, such that p(My;) > m? + Tm,
3) when n = 4 and there exists a Ms; (1 < i < m), a subtree of My, such that p(Ms;) >
m? + 31m? — 24m + 14.

Proof. 1). Let n = 2 and p(M;;) > m + 3 for a subtree My; of My. If p(Ry;) > 2 or a vertex of
M;; — Ry; has more than three pebbles or two verices of M; — Ry; contain at least two pebbles each
on them, then we can send one pebble to the root Ry of M, easily at a cost of at most 4 pebbles. If
not, then p(My;) < 3+ (m —1) =m + 2 - a contradiction to our assumption.

2). Let n = 3 and p(My;) > m? + Tm for a subtree My; of Ms. If p(Ry;) > 2 then clearly we can
move a pebble to R3. So assume that p(Ry;) < 1. Assume p(Rs;) = 0 (otherwise, {%-‘ >m+3
and hence we can move one more pebble to p(Ry;) by (1)). Let p(Ry;) = 0. Clearly any one of the
subtree of M,; must contain at least {"ﬁ%w > m+ 7. By (1), we can move a pebble to Ry; and
then the remaining number of pebbles on the subtree of My; is at least m + 3. Again by (1), we can
move another one pebble to Ry; and hence we move a pebble to R3 using at most eight pebbles.

3). Let n = 4 and p(Ms;) > m>+31m? — 24m + 14 for a subtree Ms; of My. If p(Rs;) > 2 then we
can move a pebble to Ry. Assume p(Rs;) = 0 (otherwise we are done). Then any one of the subtree
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of M3; must contain at least {m3+31min_24m+14-‘ > m?+31m—24. By (2), we can move a pebble (at a

cost of at most 16 pebbles) to R4 through Rs;, since the subtree of M3; contains at least m?4+Tm+8
pebbles. O

Theorem 2.4. For the m-ary tree My, o(My) = m?* + Tm — 6.

Proof. First, we place m? —m pebbles on the bottom vertices such that no m pebbles of which share
a parent and we did not put any pebbles on the vertex v. And then we place 8m — 7 pebbles on the
vertex v, then no distribution of J# is reachable. Thus o (M) > m? + 7m — 6.

Now, consider the distribution of m? + 7m — 6 pebbles on the vertices of M,. According to the
distributions of p(My) pebbles, we can partite them into three cases.

Case 1. Let p(My;) > m for all 1 <i < m.

If p(Ry) > 1 then there exists a distribution of J# which is reachable by our assumption and

o(M;) = m. Let p(R2) = 0. Any one of the subtree, say Mj;, must contain at least [WW >

m + 4 pebbles and hence we can move a pebble to Ry by Lemma 2.3 (1). The remaining number
of pebbles on Mj; is at least m and thus there exists a distribution of # which is reachable by our
assumption and o(M;) = m.

Case 2. Let p(My;) <m —1forall 1 <i<m.

Clearly p(R2) > p(M2) — m(m — 1) = 8m — 7 > 2m and hence we put one pebble each on the
vertices 11, Ry, - -+, Ry from the pebbles at Ry. Thus, the distribution x(r,, ris,...Rim} Of K is
reachable.

Case 3. Let p(My;) < m — 1 for some i.

Let h subtrees contain at most m — 1 pebbles each on them, where 1 < h < m — 1. We prove this
case by induction on h > 1. Let h = 1, that is, only one subtree, say Mj,,, has at most m — 1 pebbles
on it. So, our aim is to provide two pebbles to the root R, from the subtrees those have totally at
least m? 4 6m — 5 pebbles, so that we can move one pebble to Ry,,. Clearly, any one of the subtree,

m2+4+6m—>5
m—1

retaining m pebbles, by Lemma 2.3 (1). Thus, the distribution x{xy U X{r,,.} = X{KUR.,} Of # is
reachable, where x(xy is a distribution of J#" which is reachable from those subtrees having at least

say M., must contain at least { W > m + 8 and hence we can move two pebbles to Ry while

m pebbles each on them and x{g,,} is a reachable distribution of 2 for V(My,,) U Ry. So assume
the result is true for h < m—2. Let h = m—1. WLOG, let M;; be the subtree that contains at least
m pebbles. Clearly, p(Mi1) > p(My) — (m — 1)(m — 1) > 9m — 7. We have to retain m + 1 pebbles
on My, and thus M;; has 8m — 8 extra pebbles on it. Now, we need at most eight pebbles from
M, to put one pebble on a root vertex, say Ris of the subtree Mis , by induction and by Lemma
2.3 (1). After using eight pebbles (at most) from M, the remaining number of pebbles is at least
(m+ 1)+ 8(m — 2) and therefore we can move one pebble to every root vertex Ry; (j # 1, 2) of My,
by induction and by Lemma 2.3 (1). Thus, Mj; has at least m + 1 pebbles on it and hence we can
move one pebble to Ry easily. So the distribution X(g,, g, R} Of £ is reachable.

Thus o(M;) < m?+ 7m — 6. O

Theorem 2.5. For the m-ary tree Ms, o(Ms) = m? + 31m? — 24m + 2.

3

Proof. First, we place m® — m? pebbles on the bottom vertices such that no m pebbles of which

share a parent and we did not put any pebbles on the vertex v. This leaves the rightmost bottom
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vertex v unpebbled; and then we place 32m? —24m + 1 pebbles on the vertex v. Then no distribution
of # is reachable. Thus o(Mz) > m? + 31m? — 24m + 2.

Now, consider the distribution of m?® + 31m? — 24m + 2 pebbles on the vertices of Ms. According
to the distributions of p(M3) pebbles, we can partite them into three cases.

Case 1. Let p(My;) > m? +7m — 6 for all 1 <i < m.

If p(Rs) > 1 then there exists a distribution x{xur,} of 2# which is reachable by our assumption
and o(My) = m?+7m—7, where K C ", V(My;). Let p(R3) = 0. Any one of the subtree, say Moy,

t m3+31m;’24m+2 > m?+47m+ 2 pebbles and hence we can move a pebble to Rs

must contain at leas

by Lemma 2.3 (2). The remaining number of pebbles on My, is at least m? + 7m — 6 and thus there
exists a distribution X{xur,} of £ which is reachable by our assumption and o (M) = m*+7m — 6,
where K C [ J2, V/(My).

Case 2. Let p(My;) <m?+7m — 7 for all 1 <i < m.

Clearly p(R3) > p(M3) — m(m? + Tm — 7) = 24m* — 17m + 2 > 4m? + 1 and hence we can put
2m pebbles each on the vertices Roi, Rag, - -+, Ra,, from the pebbles at R3. Thus, the distribution
X{rsuk} of A is reachable, where K = {v : d(v, R3) = 2} C |J;", V(My;).

Case 3. Let p(My;) < m?* + 7m — 7 for some 1.

Let h subtrees contain at most m? + 7m — 7 pebbles each on them, where 1 < h < m — 1. We
prove this case by induction on h > 1. Let h = 1, that is, only one subtree, say Ms,,, has at most
m? + Tm — 7 pebbles on it. So, our aim is to provide 4m + 1 pebbles to the root R3 from the
subtrees My; (i # m), those have totally at least m® + 30m? — 31m — 5 pebbles, so that we can
move 2m pebbles to Rsy,, from Rs. Also, note that, any preexisting pebbles on R3 or any pebbles on
My, other than the m(m — 1) pebbles on the bottom vertices of My,,, m — 1 pebbles each with a
different parent, only make our strategy easier to implement, so assume that p(Ms,,) < m(m — 1).

Clearly, any one of the subtree, say My, must contain at least {m3+3022__123m+ﬂ > m? 4 30m — 23.
Let = > 0 pebble(s) is/are sent by the other subtrees My; j # 1,m to the root R3 at a cost of
at most 8z pebbles by Lemma 2.3 (2). So, the remaining number of pebbles on My, is at least
m3 + 30m? — 23m + 2 — (m — 2)(m? + Tm + 1) — 8x > 25m? — 10m + 4 — 8z, and hence we
can move 4m — x + 1 pebbles to the root Rj from the subtree My, by Lemma 2.3 (1) & (2).
Assume the result is true for h < m — 2. Let h = m — 1. WLOG, let My, be the subtree that
has at least m? + 7m — 6 pebbles. As we said earlier in this case, we also assume that the other
subtrees only contain at most m(m — 1) pebbles each on them. So, the subtree My; contains at least
p(M3) — (m —1)m(m — 1) > 33m? — 25m + 2 pebbles and hence we can move 4m? — 4m + 1 pebbles
to the root Rz from the subtree My, by applying induction and by Lemma 2.3 (1) & (2). Thus,
the distribution x{g,urxury of J£ is reachable, where K = {v : d(v,R3) = 2} C U2, V(M>;) and
L CV(My).

Thus o(Mz) < m? + 31m? — 24m + 2. O

Theorem 2.6. For the m-ary tree My, o(M,) = m* + 127Tm?® — 96m? + 8m — 30.

4 _m? pebbles on the bottom vertices such that no m pebbles of which share

Proof. First, we place m
a parent. This should leave the rightmost bottom vertex unpebbled; and then we place 128m3? —
96m? + 8m — 31 pebbles on the vertex v. Then no distribution of ¢ is reachable. Thus o(My) >
m* +127m3 — 96m? + 8m — 30.

Now, consider the distribution of m* + 127m? — 96m? + 8m — 30 pebbles on the vertices of M,.



46 LOURDUSAMY & MATHIVANAN

According to the distributions of p(My4) pebbles, we can partite them into three cases.

Case 1. Let p(Ms;) > m?® +31m? —24m + 2 for all 1 < i < m.

If p(R4) > 1 then there exists a distribution x{xugr,; of # which is reachable by our assumption
and o(Ms) = m®+31m?* —24m+2, where K C |J*, V(Ms;). Let p(R4) = 0. Any one of the subtree,
say Ms3;, must contain at least

[m‘l +127m3 — 96m? + 8m — 30

w > m® + 31m?* — 24m + 18,
m

pebbles and hence we can move a pebble to Ry by Lemma 2.3 (3). The remaining number of pebbles
on Mas; is at least m?® + 31m? — 24m + 2 and thus there exists a distribution X{kuRry) of & which is
reachable by our assumption and o(M3) = m? 4+ 31m? — 24m + 2, where K C [J;", V(Ms;).

Case 2. Let p(Ms;) <m?®+31m? —24m + 1 forall 1 <i < m.

Clearly p(Ry) > p(My) — m(m?® + 31m? — 24m + 1) > 8m® + 2m and hence we put 4m? + 1
pebbles each on the vertices Rz, Rso, ---, R, from the pebbles at R4. Thus, the distribution
X{Rs1,Rss, Rsmuk} Of & is reachable, where K = {v : d(v, Ry) = 3} C U2, V(Ms;).

Case 3. Let p(Mz;) < m?3 + 31m? — 24m + 1 for some 1.

Let h subtrees contain at most m3 + 31m? — 24m + 1 pebbles each on them, where 1 < h < m — 1.
We prove this case by induction on h > 1. Let h = 1, that is, only one subtree, say Ms,,, has at most
m?+31m? —24m+1 pebbles on it. We have to send 8m?+1 pebbles to the root R, from the subtrees
those have totally at least m* 4 126m3 — 127m? +32m — 31 pebbles, so that we can move 4m? pebbles
to Rs,, from R,. Also, note that, any preexixting pebbles on R4 or any pebbles on Ms, other than
the m?(m —1) pebbles on the bottom vertices of Ms,,, m(m —1) pebbles each with a different parent,
only make our strategy easier to implement, so assume that p(Ms,,) < m?*(m — 1). Clearly, any one

of the subtree, say Ms;, must contain at least {’”4“26"13;9_51’”%8"‘_30—‘ > m? + 126m? — 95m — 14.
Let © > 0 pebble(s) is/are sent by the other subtrees Ms; j # 1,m, to the root R, at a cost
of at most 16z pebbles by Lemma 2.3 (3). So, the remaining number of pebbles on Mj, is at least
m* +126m3 —95m? 4+ 8m — 30 — (m — 2)(m? +31m? — 24m +13) — 16z > 98m> — 10m? — 53m — 4 — 16,
and hence we can move 8m? + 1 — x pebbles to the root R4 from the subtree Ms;, by Lemma 2.3
(3). Assume the result is true for h =1 < m — 2. Let h = m — 1. WLOG, let Mj; be the subtree
that has at least m? + 31m? — 24m + 2 pebbles. As we said earlier in this case, we also assume
that the other subtrees only contain at most m?(m — 1) pebbles each on them. So, the subtree
Mj, contains at least p(My) — (m — 1)m?*(m — 1) > 129m3 — 97m? 4+ 8m — 30 pebbles and hence
we can move 8m> — 8m? pebbles to the root R4 and one pebble to R3; from the subtree Ms;, by

applying induction and by Lemma 2.3 (3). Thus, the distribution xgyrun of £ is reachable, where
K = {U . d(U,R4) = 3} Q UZLQ V<M31)7 L= {U . d(U,R4) = 1} and M g V(M31) — {Rgl}.
Thus o(My) < m* + 127m3 — 96m? + 8m — 30. O

Theorem 2.7. Forn > 2,

,_
B

]
O'(Mn) :mn71<m _ 1) —+ (m _ 1) mn72k22n72k+1 4+ 22LnT%J+1
=1

| %52 | n—2i—2
+ ) <22i+1+(m—1) > mj122”2j“>.
. =t

x>
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Before proving the above theorem, we state a theorem below to prove Theorem 2.7, which is a
generalization of the Lemma 2.3.

Theorem 2.8. We can send a pebble to R, the root of M,, at a cost of at most 2" pebbles, when
n =k (k> 2) and there exists a My_1y; (1 < i < m), a subtree of M,, such that p(M,—1);) >
o(M,_1) + 3(2"72).

Proof. Tt can be easily proved by induction on k£ and using the Lemma 2.3. O]

Now, we are going to prove Theorem 2.7.
Proof of Theorem 2.7. Let

,_
|3
[

T(Mn) :mn71<m _ 1) -+ (m _ 1) mn72k22n72k+1 + QQLanlJ_H
k=1

n 3J n—2i—
+ Z (221+1 Z mi— 1221+2j+1>

We place m™~!(m—1) pebbles on the bottom verices such that no m pebbles of which share a parent.
This should leave the rightmost bottom vertex unpebbled; and then we place T'(M,,)—m"™ *(m—1)—1
pebbles on the vertex v. Then no distribution of % is reachable. Thus o(M,,) > T(M,,).

We now proceed to prove the upper bound by induction. Clearly, the result is true for n = 2, 3,4 by
Thorem 2.4, 2.5 and 2.6. Consider the distribution of T'(M,,) pebbles on the vertices of M,, (n > 5).
According to the distributions of T'(M,,) pebbles, we can partite them into three cases.

Case 1. Let p(M,—1y;) > T(M,_1) for all 1 <1i < m.

If p(R,) > 1 then there exists a distribution of .# which is reachable by our assumption and
o(Mn—1) = T(M,—1). Let p(R,) = 0. Any one of the subtree, say M, 1)1, must contain at least

[%-‘ > T(M,,_1) + 2" pebbles and hence we can move a pebble to R,, by the Theorem 2.8. The

remaining number of pebbles on M,_y); is at least T(M,_1) and thus there exists a distribution of
2 which is reachable by our assumption and o(M,,—1) = T'(M,_1).
Case 2. Let p(M—1y;)) < T(M,—;) —1forall 1 <i<m.

,_
w3
[

Clearly p(R,) > T(M,) — m(T(M,_1)—1) > m | >, m"2k2n=2k+1 | 4+ 1 and hence we put
k=1

5]

>~ m™2k2m=2F pebbles each on the vertices Ri,—1)1, Rm-1)2, ***s Rn-1ym from the pebbles at R,,.
k=1

From the pebbles on R(;,_1);, we move a pebble to every vertex in every second row, starting, in the

subtree M;,_1);, with the row that is next to the bottom row. Thus, the distribution x{xug,} of %
is reachable, where K C (J", V(M—1):).
Case 3. Let p(M,—1y;) < T(M,,—1) — 1 for some 1.
Let h subtrees contain at most T'(M,,_1) — 1 pebbles each on them, where 1 < h < m — 1. We
prove this case by induction on i > 1. Let h = 1, that is, only one subtree, say M(,_1),, has at
Ed

most T'(M,,_;) — 1 pebbles on it. So, our aim is to provide | Y mn=2k2n=2k+1 ) pebbles to the
k=1

root R, from the subtrees those have totally at least T'(M,) — m" ?(m — 1) pebbles, so that we
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n

2
can move | Y m" 26272k | pebbles to R(;,—1)m- Clearly, any one of the subtree, say M,_1);, must
k=1

—

5]

mn—2kon=2k+1 4 1 | and hence we can move
1

contain at least [T(M")_;::Q(m_l)w >T(My_q)+2"
k=

n

2
S mn=#Rn=2k+1 | 11 pebbles to R, while retaining T'(M,_1) pebbles, by the Theorem 2.8. Thus,
k=1

the distribution x(xurur,} of £ is reachable, where x(xy is a distribution of %" which is reachable
from those subtrees having at least T'(A/,,_1) pebbles each on them, xyz) is a reachable distribution
of 7 in M, _1y,, and xg,) is a reachable distribution of JZ" for the incident edges of R,. So assume
the result is true for h =1 < m —2. Let h = m —1. WLOG, let M(,,_1); be the subtree that contains
at least T'(M,_1) pebbles. Clearly, p(M,—1y1) > T(M,) — (m —1)m"2(m—1) > T(M,_1) + 2" (m —

bl
1) | Y mr2kan=2H | 4 (m — 1)m™~2. We have to retain T'(M,_1) pebbles on M,_1y; and thus
k=1

—
—

%
Mn—1y1 has 2"(m —1) mn—2k9n=2k+1 1 extra pebbles on it. Now, we need at most 2"! pebbles
=1

from M(,_1); to put one pebble on a root vertex, say R(,_1), of the subtree M, _1)2 , by induction

%
and by the Theorem 2.8. After using at most 2" [ > m" 2272+ | pebbles from M,_1y, the
k=1

—

i
remaining number of pebbles is at least T'(M,,_1) + 2"(m — 2) mn Q=L (g — 1)ym 2
k=1

5]
mn—2k 2n—2k
1

and therefore we can move pebbles to every root vertex Rg,_1); (j # 1, 2) of

k=

M,—1); by induction and by the Theorem 2.8. In this process, for even values of n, as we place
one pebble each on the root vertex R(,_1); (for all j # 1), the edges between R, and R;,—1); 1s also
covered. The edge between R, and R(,_1); can also be covered as the root vertex R(,_q); can be
pebbled with at least T'(M,,_1) = o(M,,_1) on the vertices of M,_1);. For the case when n is odd, as
there are 2" extra pebbles (after covering all the edges of M(,_1)1), we can pebble the root vertex R,
of M, and thus the edge R, R,_1) is also covered. So there exists a distribution of %" is reachable.
Thus, o(M,) < T(M,). n

Corollary 2.9. [l1] 0(By) =1, o(B;) =2, 0(Bz2) =12, 0(B3) = 86, 0(Bs) = 634 and for n > 2,

L] 5]
U(Mn) — 2n71 + Z 2n72k‘22n72k’+1 + 22L7L51J+1 4 Z (22i+1 + Z 2j122i+2j+1> .
k=1 i—0 =1

Proof. Let m = 2 in Theorem 2.7. O



THE COVERING COVER PEBBLING NUMBER-ACYCLIC GRAPHS 49

3. The covering cover pebbling number for a caterpillar

In this section, we are going to determine the covering cover pebbling number of a caterpiller, using
Definition 1.8.

Definition 3.1. A tree T is called a caterpillar if the deletion of all pendent vertices of the tree
results in a path P, the spine of the caterpillar 7. For convenience, we shall call a path P with
maximum length which contains P a body of the caterpillar, and all the edges which are incident to
pendent vertices are the legs of the caterpillar 7. Furthermore, the vertex v € V(P) is a joint of T
provided that degr(v) > 3 or v is adjacent to the end vertices.

In otherwords, a tree is said to be caterpillar iff all nodes of degree three or more are surrounded
by at most two nodes of degree two or greater.

Let C(n, sy, 59,53, ...,5,) be the caterpillar tree T such that the spine P’ : vjvyvs---v, has n
vertices and let the vertex v; € V(PI) has s; > 0 pendant vertices where 1 <7 < n. Clearly s; > 1
and s, > 1, and hence we label a vertex as vy which is adjacent to v; and label another vertex as
Up41 which is adjacent to v,. Let I = {v; : 5; > 2} where 1 <i <n and let J = {v; : s; = 1} where
1<j<n. Let IUJ={v,06,0, ,U0m,Up: 1 <k<l<---<m<n}.

Theorem 3.2. [11| For the path P, (n >2), o(P,) = [£5].

Theorem 3.3. For a caterpillar C(n, s1, e, ..., Sn), the covering cover pebbling number is equal to,

1 ifuvyeIUJ or|P¥|=0( mod 2
Z 2a_{ ZfUQ 07n| Al (mo >_|_ Z (sa—l)—i— Z 2b+1T<Pflc>7

va€lUJ 0 otherwise va€IUJ vy, 0 €TUT

where vy, and v, (b < ¢) are a pair of consecutive vertices in I U J, and ch  Ups1Vps2--Ve_oUe1 With
T(P%) = o(Py) if |PY|=d > 2 and 0 otherwise.

Proof. Let

1 ifvy € TUJ or |Pi¥|=0( mod 2)
W)= Y { _ g LY Dt Y TR,
va€IUJ 0  otherwise va€lUJ vy, 0e€lUT

First we place one pebble each on the s; — 1 pendant vertices of v; € I for all 7, and place zero
pebbles on the pendant vertex of v; € J for all j such that we do not place pebbles on vy. After

that we place p(C) — > (s, — 1) pebbles on the vertex vy and zero pebbles on the other vertices
va €1UJ

of C(n, sy, 2, ..., $,). Thus no distribution of ¢ is reachable and so o(C(n, s1, 9, ..., $,)) > p(C).
Now consider the distribution of p(C) pebbles on the vertices of C(n, sy, ss,...,s,). Here our
strategy is to move one pebble each to the vertices belong to I U J and we have to cover the edges
of in between vertices, for example v, and v, of I U J using the path P if needed. Note that if
we have one pebble each at the s; — 1 pendant vertices of v; € I does not decrease the number of
pebbles needed for v; from the other vertex. If we add one more pebble to a pendant vertex of v;,
clearly all edges except v;_1v; and v;v;4; incident with the vertex v; is covered. We now prove that

a worst case scenario is indeed the one in which all the p(C') — > (s, — 1) pebbles are in either
va €IUJ
Vg OT V,41, first we let vy be the vertex: Let € be a worst case configuration that contains pebbles
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on P' U {v,1} U {unpebbled pendant vertices} other than those on the above mentioned pendant
vertices. Then moving all of these to the vertex vy would require us to use more pebbles to cover the
edges of C(n, sy, g, ..., $y), a contradiction to the fact that € is a worst case configuration. Also, as
noted before, removing single pebble from the pebbled pendant vertices does not lessen the covering
cover pebbling number starting at .

Now, we put one pebble each to the vertices of [ U J from vy to cover the incident edge of the
unpebbled pendant vertices which are adjacent to some vertices of I U J. Clearly, to achieve that

we need Y 2% pebbles from vy. Let v be the next vertex in I U J after the vertex v;. We have
Ve €EIUJ

to cover the edges between the vertices v; and vg in C(n, sy, ss,...,S,). Clearly, we have covered
the incident edges of v; and vg. Consider the path P}‘k D UVoUy - - Up_oUk_1. To cover the edges of
this P}* path from the vertex vy, we need 230(P;) pebbles if |Pif|= d > 2 and we don’t need any
pebbles if |[P}¥|< 1. We do the same procedure for other pairs of consecutive verices (vy,v;), -,
(U, vp,) of T U J. So, to cover the edges between the vertices of the pair of vertices of I U J, we
need Y. 2°FMT(PY) pebbles from v,. Clearly, we are done using p(C') pebbles if vy ¢ I U J and

Vp,ve€IUJT
| Pi¥|5£ 0( mod 2). Suppose vy € I U J or |Pi¥|= 0( mod 2), then we remove the single pebble at v;

and put one pebble at vy. So we subtract one pebble for the case vy € I U J or |Pi¥|= 0( mod 2).
Thus we have covered all the edges of C(n, s1, $a, ..., s,) using p(C') pebbles.

We relabel the vertices v, 11, v, -+, v1,v9 by vg,v1,- -, Un, Unyq respectively and then we do the
same thing as we did above. Finally choose the one (before relabeling or after relabeling) having

maximum amount of pebbles with it will be the covering cover pebbling number for C'(n, s1, sa, ..., S)-
m

For our convenience, we take p(C) = T1; + Tio + Ti3, where

TH:ZQQ_ if vy | or |Pi¥|=0( mod 2)
va€IUJ 0  otherwise,
Ty = Z 2b+lT(ch)7

vy, Ve €ETUJS

and

Theorem 3.4. For the path P, (n > 4),

1 if [P P)= 0( mod 2),

o(P,) =2"2 4+ 40(P_y) +2 —
0 otherwise.

Proof. Let P, : vovy -+ -v,_1. Clearly, I = () and J = {v1,v, 2},80 81 =1, 8, o =l and TUJ =
{v1,Up_2}. Then Pj‘("_Q) Uy -+ U,_3. Now we are going to apply Thorem 3.3.
Case 1. |Pj‘(n_2)|: 0(mod 2).
Th=02+2"H -1=2+2"2-1,
T12 :22T (le(an)) = 4U(Pnf4)7
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and
T13 = (81 - ].) + (Sn_Q - ].) =0.

Thus o(P,) = 2" 2+ 40(P,_4) + 1.
Case 2. |Pj‘(n_2)|7£ 0(mod 2).
Tll =2+ 2”72, T12 = 40<Pn—4) and T13 = (. Thus O'(Pn) = 2”72 + 40'(Pn_4) + 2. L]

Definition 3.5. A graph is called Double Star-Path(DSP) if the end vertices of a path P : vyvy - - v,
on n vertices adjoint to the center vertices of the star graphs Ky; (I > 2) and K, (m > 2)
respectively. We denote it by P, (I, m).

Corollary 3.6. For the graph Double Star-Path P, (l,m),

1 4f |[P"= 0( mod 2),

o(P,(l,m))=2"+40(P,—2) +1+m —
0  otherwise,

where P : vovs -+ -v,_1 (n > 4). Note that, we let 0(P,_5) =0 if n < 3.

Proof. Let P,,5 : vovy -+ vyq1. Clearly, I = {vy,v,} and J = 0,80 sy =1, s, =mand TUJ =
{vi,v,}. Then P}" : vy---v,_1. Now we are going to apply Thorem 3.3.
Case 1. |PY"|= 0(mod 2).

T11 :2 + 2” — 1,
Tis =2°T (P)") = 40(P,_»),

and
T13:(51—1)+(5n—1):l+m—2

Thus o(P,(I,m)) =2"+40(P,—2) + 1 +m — 1.
Case 2. |le(”_2)|7£ 0(mod 2).
T11 =2+ 2”, T12 = 40—(Pn72) and T13 =l+m—2.

Thus o(P,(I,m)) = 2"+ 40(P,—2) + [ + m. O

Definition 3.7. The class of fuses is defined as follows: the vertices of a Fuse Fj(k) (I > 1 and
k > 2)are vovy,vg, -+, v,—1 with n = [+ k + 1, so that the first [ + 1 vertices form a path from
VoU1, Vo, - - -, v, and the remaining vertices vy, 1, V12, --,v,_1 are independent and adjacent only to
v;. The path sometimes called the wick, while the remaining vertices are sometimes called the sparks.
For example, Fi(k) is the star K1 on k + 2 vertices.

Corollary 3.8. For the Fuse graph Fi(k) (I > 2), the covering cover pebbling number is equal to

1 if|P¥=0 d?2),
2 tdo(Py) +hk+1— i 1P]=0( mod 2)
0 otherwise.
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Proof. Let Py : vgvy - - - vu4q. Clearly, I = {v;} and J = {v1},s0s1 =1, sy = kand IUJ = {vy, v }.
Then P} :vy---v_;. Now we are going to apply Theorem 3.3.
Case 1. |P}|= 0(mod 2).

and

Ty =2+2"—1,
T 240(P1—2)>

T13:/{?—1.

Thus o(F)(k)) = 2" + 4o (P,_2) + k.
Case 2. |Pi|# 0(mod 2).

T11 =2+ 2l, T12 = 40'(Pl_2) and T13 =k —1.

Thus o(Fi(k)) = 2" + 40 (P_y) + k + 1. O
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