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abstract

Let G = (V,E, F ) be a planar graph with vertex set V , edge set E, and set of faces F. For nonnegative

integers a, b, and c, a type (a, b, c) face-magic labeling of G is an assignment of a labels to each vertex,

b labels to each edge, and c labels to each face from the set of integer labels {1, 2, . . . a|V |+b|E|+c|F |}
such that each label is used exactly once, and for each s-sided face f ∈ F, the sum of the label of f

with the labels of the vertices and edges incident with f is equal to some �xed constant µs for every

s. We �nd necessary and su�cient conditions for every quadruple (a, b, c, n) such that the n-prism

graph Yn
∼= K2□Cn admits a face-magic labeling of type (a, b, c).
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1. Introduction

Let a, b, and c be three nonnegative integers and G = (V,E) be a graph with some embedding

that induces a set of faces F . A labeling of type (a, b, c) is an assignment of labels from the set

{1, 2, . . . , a|V |+b|E|+c|F |} such that every vertex, edge, and face receives exactly a, b, and c labels,

respectively. Typically a, b, c ∈ {0, 1}, but at least one author has considered other integer values [6].

The weight of a face f , w(f), under such a labeling is the sum of the labels incident with f along

with the label of f. If the weight of every s-sided face is equal to some �xed constant (we call it a

magic constant) µs for all s, then we say the labeling is face-magic of type (a, b, c). The �gures in

this article outside of Figure 1 show various examples of face-magic labelings of type (a, b, c).

For any n ≥ 3, the n-prism, Yn
∼= P2□Cn, is a graph with vertex set V = {ui, vi : i = 1, 2, . . . , n}

and edge set E = {uivi, uiui+1, vivi+1 : i = 1, 2, . . . , n}. When embedded in the Euclidean plane

in the natural way (see Figure 1), these vertices and edges induce a set of faces F = {Fi : i =
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1, 2, . . . , n} ∪ F0 ∪ Fn+1, where each face Fi is bounded by the 4 edges {uiui+1, vivi+1, uivi, vi+1vi+1}
for i = 1, 2, . . . , n, while F0 and Fn+1 are both n-sided faces bounded by the edges {uiui+1 : i =

1, 2, . . . , n} and {vivi+1 : i = 1, 2, . . . , n}, respectively. Observe |V |= 2n, |E|= 3n, and |F |= n+ 2.

In the following sections we �nd necessary and su�cient conditions for (a, b, c, n) such that Yn

admits a face-magic labeling of type (a, b, c).
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Fig. 1. The n-prism, Yn

2. Tools

Some of our constructions make use of labelings related to type (a, b, c) labelings. One such labeling

is de�ned as follows. Let G = (V,E) be a graph and f : V ∪ E → {1, 2, . . . , |V |+|E|} a bijection. If

there exists a constant k such that f(x)+f(xy)+f(y) = k for every xy ∈ E, then f is called an edge-

magic total (EMT) labeling and G is called an EMT graph. The sum w(xy) = f(x) + f(xy) + f(y)

is called the weight of the edge xy.

Theorem 2.1 (Kotzig & Rosa [5]). The cycle Cn is an edge-magic total graph for all n ≥ 3.

Recently, Freyberg generalized EMT labelings to allow the assignment of any number of labels to

the vertices or edges [2]. Speci�cally, for any α, β ≥ 0, an edge-magic total labeling of type (α, β) is

an assignment of labels from the set {1, 2, . . . , α|V |+β|E|} such that every vertex receives exactly

α labels, every edge receives exactly β labels, and the weight of every edge is equal to some �xed

constant.

Theorem 2.2 (Freyberg [2]). The cycle Cn is an edge-magic total graph of type (α, β) for n ≥ 3

and α, β ≥ 1.

An m× n magic rectangle is an m× n array of the �rst mn positive integers such that no integer

is repeated and the sum of integers in each row, column, respectively is equal to a �xed constant

ρ, σ, respectively. Magic rectangles provide a natural generalization of the more widely known magic

squares. Harmuth proved the following in [3] and [4].

Theorem 2.3 (Harmuth [3],[4]). An m × n magic rectangle exists if and only if m ≡ n (mod 2),

except if m = 1, n = 1, or m = n = 2.
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3. Type (a, b, c) with a, b, c ∈ {0, 1}

In this section, we will prove the following theorem.

Theorem 3.1. Let a, b, c ∈ {0, 1}, n ≥ 3. The prism graph Yn admits a face-magic labeling of type

(a, b, c) if and only if (a, b, c, n) is not

(i) (0, 0, 1, n) for any n,

(ii) (1, 0, 0, n) for odd n,

(iii) (1, 0, 1, n) for n ≡ 0 (mod 4).

We brie�y note that for any prism Yn with n ≥ 3, the trivial type (0, 0, 0) labeling which assigns

no labels is face-magic, as each region has a weight of 0. In addition, it is easy to see that a type

(0, 0, 1) face magic labeling of Yn cannot exist for any n, as no two faces have the same weight. We

will now examine the remaining six cases in further detail.

3.1. Type (1, 1, 0)

In the �rst known paper on face-magic labelings of type (a, b, c), Lih found type (1, 1, 0) face-magic

labelings of some families of plane graphs including friendship graphs, wheels, some platonic solids,

and prisms [6]. Of interest here is the following result.

Theorem 3.2 (Lih [6]). If n ≥ 3, then the prism graph Yn admits a type (1, 1, 0) face-magic labeling.

Since type (1, 1, 0) face-magic labelings of prisms were completely determined in [6], we will not

consider them further here. However, we will note that in the proof of Theorem 3.2, Lih found several

simpler face-magic labelings of type (a, b, c). Lih also used consecutive labelings, where for each s the

weights of s-sided faces form a consecutive set of integers. These are also referred to as 1-antimagic

labelings of type (a, b, c). These labelings will be referenced as relevant in the following sections.

3.2. Type (1, 0, 0)

The following two results were proven in [6]:

Theorem 3.3 (Lih [6]). If n is even, then the prism graph Yn admits a type (1, 0, 0) face-magic

labeling.

Theorem 3.4 (Lih [6]). If n is odd, then the prism graph Yn admits a type (1, 0, 0) 1-antimagic

labeling.

As a result, the question of �nding a (1, 0, 0) face-magic labeling for odd prisms was not explored

in [6]. We show that it is in fact impossible to form such a labeling, proving this for the more general

case (a, 0, 0) where a is odd.

Theorem 3.5. Let a, n be nonnegative odd integers with n ≥ 3. Then the prism Yn does not admit

a type (a, 0, 0) face-magic labeling.

Proof. Suppose that Yn had a face-magic labeling of type (a, 0, 0). Note that each vertex appears
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on the boundary of exactly one n-sided face. Let the weight of each n-sided face be wn. It follows

that the sum of the vertex labels is equal to 2wn, and therefore even. However, the 2n vertices of

Yn are assigned labels containing all integers from 1 to 2an, and thus the sum of the vertex labels is∑2an
i=1 i = an(2an + 1). This sum is clearly odd, contradicting the fact that the vertex labels sum to

2wn.

3.3. Type (0, 1, 0)

The proof of Theorem 3.2 also made use of several labelings of type (0, 1, 0). In particular, Lih found

the following:

Theorem 3.6 (Lih [6]). If n is even, then the prism graph Yn admits a type (0, 1, 0) face-magic

labeling.

Theorem 3.7 (Lih [6]). If n is odd then the prism graph Yn admits a type (0, 1, 0) 1-antimagic

labeling.

As in the case of (1, 0, 0) labelings, face-magic labelings of type (0, 1, 0) were not explored in [6]

for odd n. However, in contrast we will see that such labelings do in fact exist. To begin, we will

prove a lemma about summing select terms in arithmetic sequences.

Lemma 3.8. Let k ≥ 2, k ̸= 4, let A = {2k+3, 2k+6, ..., 5k}, and let B = {3k+2, 3k+5, ..., 6k+2}.
Then there are subsets X ⊂ A, Y ⊂ B such that

∑
x∈X x+

∑
y∈Y y = (2k + 1)2.

Proof. Let s(j) =
∑k−j

i=0 (6k+2− 3i)− (2k+1)2. This is the sum of all but the j lowest elements of

B minus (2k+1)2 and is equal to (48k2+72k+25)−(6j+6k+1)2

24
for integers j, k with j ≤ k. Clearly when j

is positive, s(j) is decreasing. It follows that s(j) is nonnegative for (6j+6k+1)2 ≤ 48k2+72k+25,

or j ≤
√
48k2+72k+25−6k−1

6
. We will let jk = ⌊

√
48k2+72k+25−6k−1

6
⌋, and thus jk is the largest integer for

which s(j) is nonnegative for a given value of k. We have the following inequalities:

√
48k2 + 72k + 25− 6k − 7

6
≤ jk ≤

k

6
+ 1,

k + 1− jk ≥
5k

6
,

s(jk) ≤ s

(√
48k2 + 72k + 25− 6k − 7

6

)
=

√
48k2 + 72k + 25− 3

2
≤ 4k (for k ≥ 2),

s(jk − 2) ≤ s

(√
48k2 + 72k + 25− 6k − 19

6

)
=

3
√
48k2 + 72k + 25− 27

2
≤ 21k

2
.

With these initial �ndings, we now proceed by cases on the equivalence class of k modulo 3. Our

general approach will be to select all but the jk smallest values in B; the sum of these elements

exceeds (2k+1)2 by s(jk). We will then reduce this sum by s(jk) by �rst exchanging selected values

in B with smaller, unselected values until the new sum is either (2k+1)2, (2k+1)2+1, or (2k+1)2+2.

Then, we perform some exchanges between selected elements in B and elements in A until the sum

is exactly (2k + 1)2. In the case where k ≡ 1 (mod 3), a slightly di�erent approach will be used.

We will need to restrict to the case where jk ≥ 2, which requires that k ≥ 9. We can show the
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remaining cases here:

k = 2 : X = ∅, Y = {11, 14},
k = 3 : X = {12}, Y = {17, 20},
k = 5 : X = ∅, Y = {17, 20, 23, 29, 32},
k = 6 : X = {18}, Y = {23, 26, 29, 35, 38},
k = 7 : X = {35}, Y = {32, 35, 38, 41, 44},
k = 8 : X = {34}, Y = {35, 38, 41, 44, 47, 50}.

Now, let ai, bi be the ith element of A,B in ascending order respectively. Note that |A|= k, |B|=
k + 1.

Case 1. k ≡ 0 (mod 3)

Begin by letting Y0 = {bi|jk+1 ≤ i ≤ k+1}. The sum of elements in Y0 sum to (2k+1)2+s(jk) ≤
(2k+1)2+4k. Note that by replacing bi with bi−i′ , the sum decreases by 3i′. By replacing bjk+1 with

bjk+1−i′ for 1 ≤ i′ ≤ jk or bi′+1 with b1 for jk ≤ i′ ≤ k, we can decrease the sum by any multiple of

3 up to 3k. By repeating this again except with bjk+1 and bjk+1−i′ for 1 ≤ i′ ≤ jk − 1 or bi′+2 and b2
for jk − 1 ≤ i ≤ k − 2, we can decrease the sum by any multiple of 3 up to a total of 6k − 6. Note

that this requires |Y0|= k+1− jk ≥ 2, which follows for k ≥ 3. Since 6k− 6 ≥ 4k for k ≥ 3, we form

Y1 by performing at most two replacements such that the sum of elements in Y1 exceeds (2k + 1)2

by either 0, 1, or 2. If this excess is 0, we are done by letting X = ∅, Y = Y1; therefore, assume the

excess is either 1 or 2.

Next, note that since k ≡ 0 (mod 3), the element 5k − 1 belongs to B, with 5k − 1 = b2k/3. In

addition, for each element b ∈ B less than or equal to 5k − 1, b+ 1, b− 2 ∈ A. We would like Y0 to

have at least two elements less than or equal to 5k − 1, which therefore implies Y1 also has at least

two such elements. This certainly occurs when 2k/3 ≥ jk + 2, which is true for all k ≥ 6. If the sum

of elements in Y1 exceeds (2k + 1)2 by 2, remove an element y ≤ 5k − 1 from Y1 to form Y, and let

X = {y − 2}. If the sum of elements in Y1 exceeds (2k + 1)2 by 1 instead, form Y by removing two

elements y, y′ ≤ 5k − 1 from Y1 with y < y′, and let X = {y − 2, y′ + 1}. In both cases, the sums of

elements in X and Y are exactly (2k + 1)2.

Case 2. k ≡ 2 (mod 3)

Form the set Y1 as in Case 1. Next, note that since k ≡ 2 (mod 3), the element 5k + 1 belongs

to B, with 5k + 1 = b(2k+2)/3. Then for each element b ∈ B less than or equal to 5k + 1, b− 1 ∈ A.

We would like Y1 to have at least two elements less than or equal to 5k + 1, which is the case when

(2k+2)/3 ≥ jk+2. This inequality holds for all k ≥ 5. If the sum of of elements in Y1 exceeds (2k+1)2

by 1 (or 2), remove 1 (or 2) elements y(, y′) ≤ 5k+1 from Y1 to form Y , and let X = {y−1(, y′−1)}.
In both cases the sums of elements in X and Y are exactly (2k + 1)2.

Case 3. k ≡ 1 (mod 3)

In this case, elements of A and B are all equivalent to 2 (mod 3). Let j′k be the largest integer

j for which s(j) is a nonnegative multiple of 3. Therefore, since s(j − 1) ≡ 2 + s(j) (mod 3), it

follows that j′k ∈ {jk, jk − 1, jk − 2}. Let X0 = ∅, Y0 = {bi|j′k + 1 ≤ i ≤ k + 1}. Since k ≥ 9, jk ≥ 2,

and all indices are at least 1. Note that the sum of elements in Y0 exceeds (2k + 1)2 by at most

s(jk − 2) ≤ 21k
2
.
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As in Case 1, replacing bi with bi−i′ reduces the sum by 3i′. In addition, note that bk+1−ak = k+2,

and therefore bk+1 − ai = bk+1 − ak + ak − ai = 4k+2− 3i. Therefore, replacing bk+1 with ai reduces

the sum by 4k + 2− 3i for any 1 ≤ i ≤ k. Therefore, we can decrease the sum of elements in Y0 and

X0 in one of three ways:

(1) Replace bj′k+1 with bj′k+1−i′ for 1 ≤ i′ ≤ j′k
(2) Replace bi′+1 with b1 for j

′
k ≤ i′ ≤ k

(3) Remove bk+1 from Y0 and add ai′ to X0 for 1 ≤ i′ ≤ k.

In this way, we can reduce the sum by any multiple of 3 up to 4k−1. Since k+1−j′k ≥ 4 for k ≥ 5, Y1

initially has at least 4 elements. By repeating this process up to three additional times (with natural

adjustments excluding the largest element of B and the smallest element of A each time the process

repeats), we can reduce the sum by any multiple of 3 up to (4k−1)+(4k−7)+(4k−13)+(4k−19) =

16k − 40, which is at least 21k
2

for k ≥ 8. By letting X, Y be the result of performing appropriate

exchanges on sets X0 and Y0 to reduce the sum by s(j′k), the sum of elements in X and Y will be

exactly (2k + 1)2.

Therefore in all cases we can obtain a sum of (2k + 1)2, completing the proof.

Theorem 3.9. If n is odd, then the prism graph Yn admits a type (0, 1, 0) face-magic labeling.

Proof. Let n = 2k + 1 with k ≥ 1. We provide explicit labelings for n = 3 and n = 9 in Figure 2.

Therefore, we may assume that k ̸= 1, 4. Form an edge labeling ℓ′ as follows:

ℓ′(uiui+1) =


2k + 1− 2i, 1 ≤ i ≤ k,

4k + 2− 2i k + 1 ≤ i ≤ 2k,

2k + 1 i = 2k + 1,

ℓ′(vivi+1) =

{
5k + 3 + i 1 ≤ i ≤ k,

3k + 2 + i k + 1 ≤ i ≤ 2k + 1,

ℓ′(uivi) =

{
2k + 2 + i−1

2
i is odd,

3k + 2 + i
2

i is even.

5

9 1
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4

3

8

(a) n = 3
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(b) n = 9

Fig. 2. Type (0, 1, 0) face-magic labelings of Yn
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One can verify that the weight of each 4-sided region in Yn under ℓ′ is 12k + 8, and the weight of

the outer region exceeds that of the inner region by 2n2 = 2(2k+1)2. Let di = ℓ′(vivi+1)− ℓ′(uiui+1).

For a set of indices S = {i1, i2, ..., is}, exchanging the label of ℓ′(uiui+1) with ℓ′(vivi+1) for all i ∈ S

has the e�ect of increasing the weight of the inner region by
∑

i∈S di and decreasing the weight of

the outer region by the same amount, while leaving the weights of all 4-sided regions the same.

Therefore, we would like to �nd a set S such that
∑

i∈S di = (2k + 1)2. Now, note that{
{dk+1, dk+2, ..., d2k} = {2k + 3, 2k + 6, ..., 5k},
{d2k+1, d1, d2, ..., dk} = {3k + 2, 3k + 5, ..., 6k + 2}.

(1)

Denote these as A,B respectively. By Lemma 3.8, there exist subsets of X ⊂ A, Y ⊂ B such that∑
x∈X x +

∑
y∈Y y = (2k + 1)2. Let S contain the subscripts of di corresponding to the elements in

X, Y , and form ℓ by exchanging the labels of ℓ′(aiai+1) and ℓ′(bibi+1) for all i ∈ S and leaving all

remaining labels the same. This once again assigns a weight of 12k+8 to each 4-sided face, but now

the weights of the two n-sided faces are equal, resulting in a (0, 1, 0) face magic labeling.

3.4. Type (1, 0, 1)

When n is odd, we have a 1-antimagic labeling ℓ′ of type (1, 0, 0) by Theorem 3.4. One can easily

see that such a labeling can be used to form a face-magic labeling ℓ of type (1, 0, 1). Therefore, we

have the following:

Theorem 3.10. If n is odd, then the prism graph Yn admits a type (1, 0, 1) face-magic labeling.

We will therefore focus our attention on the case where n is even. We begin with a necessary

condition for a prism to have a face magic labeling of type (1, 0, 1). Once again we will generalize,

proving the result for type (a, 0, c) face-magic labelings where a is any nonnegative integer and c is

odd.

Theorem 3.11. Let a, c, n be nonnegative integers such that c is odd and n ≥ 3. If the prism graph

Yn admits a type (a, 0, c) face-magic labeling, then n ̸≡ 0 (mod 4).

Proof. By way of contradiction, let n = 4k for some integer k, and let Yn have an (a, 0, c) face magic

labeling, with n-sided faces having weight µn and 4-sided faces having weight µ4. Let sv be the sum

of the vertex labels, sr be the sum of the region labels, and s be the sum of all labels. By summing

the weight of all faces, we obtain the equality

2µn + nµ4 = 3sv + sr

= 2sv + s

= 2sv +
(2an+ (n+ 2)c)(2an+ (n+ 2)c+ 1)

2
.

Thus, since n is even, (2an+(n+2)c)(2an+(n+2)c+1)
2

is also even. Furthermore, since 2an+ (n+ 2)c+ 1

is odd, it follows that 2an+(n+2)c
2

must be an even integer. However, 2an+(n+2)c
2

= 8ak+(4k+2)c
2

=

4ak + (2k + 1)c, which is odd. This is a contradiction, and therefore n ̸≡ 0 (mod 4).

Therefore, we see that if n is even and Yn has a type (1, 0, 1) face-magic labeling, then n ≡ 2

(mod 4). We will now demonstrate that such labelings exist.
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The proof of the next theorem was constructed using a type (2, 1) edge-magic total labeling of

Cn given by Freyberg in [2]. Let n ≡ 2 (mod 4), Cn = (x1, x2, . . . , xn) and f : V (Cn) ∪ E(Cn) →
{1, 2, . . . , 3n} be such a labeling. Then we know f(xi) + f(xixi+1) + f(xi+1) = 15n

2
+ 4 for all

i ∈ {1, 2, . . . , n}, where the arithmetic is performed modulo n. By assigning the label f(xixi+1) to

the face Fi ∈ F (Yn) and arbitrarily assigning the two labels in f(xi) to the vertices ui and vi in

V (Yn), we instantly get a labeling ℓ′ of the vertices and 4-sided faces of Yn with the property that

the weight of a 4-sided face is

w(Fi) = ℓ′(ui) + ℓ′(vi) + ℓ′(Fi) + ℓ′(ui+1) + ℓ′(vi+1)

= f(xi) + f(xixi+1) + f(xi+1)

= 15n
2

+ 4,

for all i ∈ {1, 2, . . . , n}. However, the two n-sided faces of Yn need not have equal weight. We have

remedied this in the proof of the next theorem by carefully partitioning f(xi) into pairs (ℓ
′(ui), ℓ

′(vi))

such that
∑n

i=1(ℓ
′(ui)− ℓ′(vi)) = 1.

Theorem 3.12. If n ≡ 2 (mod 4), then the prism graph Yn admits a type (1, 0, 1) face-magic label-

ing.

Proof. Let n = 4k + 2 for some integer k ≥ 1. If k = 1 or k = 2, the corresponding labelings can be

found in Figure 3. So we assume k ≥ 3 and we describe a labeling ℓ : V ∪ F → {1, 2, . . . , 12k + 8}
as follows. Let ℓ(F0) = 12k + 7, ℓ(F1) = 2, ℓ(F2k+2) = 12k + 2, ℓ(Fn+1) = 12k + 8, and

ℓ(Fi) =

{
−8 + 6i for i = 2, 3, . . . , 2k + 1,

24k + 18− 6i for i = 2k + 3, 2k + 4, . . . , 4k + 2.
.
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(b) n = 10

Fig. 3. Type (1, 0, 1) face-magic labelings of Yn

Now that the face labels have been assigned, we de�ne the vertex labels in the following table.
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i ℓ(ui) ℓ(vi)
∑

i(ℓ(ui)− ℓ(vi))

1 6k + 5 12k + 4 −6k + 1

2 3 12k + 5 −12k − 2

3 12k + 6 6k + 1 6k + 5

4, 6, . . . , 2k − 4 −7 + 3i 12k + 21− 6i (k − 3)(−3k − 28)

5, 7, . . . , 2k + 1 12k + 20− 6i 6k − 4 + 3i −3(k2 − 1)

2k − 2, 2k, 2k + 2 12k + 21− 6i −7 + 3i −6(3k − 14)

2k + 3, 2k + 5, . . . , 4k − 5 18k + 10− 3i −12k − 10 + 6i (k − 3)(3k + 29)

2k + 4, 2k + 6, . . . , 4k + 2 −12k − 9 + 6i 12k + 7− 3i k(3k + 11)

4k − 3, 4k − 1, 4k + 1 −12k − 10 + 6i 18k + 10− 3i −3(−6k + 29)

The table makes it easy enough to check that ℓ is a bijection. One can also check that (amazingly!)

the sum of the sums in the rightmost column in the table is 1. This will be important next.

We proceed by checking the face weights. We begin with the two n-sided faces. We have

w(F0)− w(Fn+1) = ℓ(F0) +
∑n

i=1 ℓ(ui)− (ℓ(Fn+1) +
∑n

i=1 ℓ(vi))

= ℓ(F0)− ℓ(Fn+1) +
∑n

i=1(ℓ(ui)− ℓ(vi))

= −1 + 1

= 0.

Therefore, w(F0) = w(Fn+1). By the discussion immediately preceding this theorem, we know

w(Fi) =
15n
2

+ 4 for i ∈ {1, 2, . . . , n}. Hence, ℓ is a face-magic labeling of type (1, 0, 1) and the proof

is complete.

3.5. Type (0, 1, 1)

Once again, when n is odd we have a 1-antimagic labeling of type (0, 1, 0) by Theorem 3.7, which

easily leads to a face-magic labeling of type (0, 1, 1). We therefore conclude the following:

Theorem 3.13. If n is odd, then the prism graph Yn admits a type (0, 1, 1) face-magic labeling.

We can use a di�erent approach to show that this is also true when n is even.

Theorem 3.14. If n is even, then the prism graph Yn admits a type (0, 1, 1) face-magic labeling.

Proof. If n = 4, the labeling is shown in Figure 4. Therefore we let n ̸= 4, Yn = (V,E, F ),

Cn = (x1, x2, . . . , xn), and f : V (Cn) ∪ E(Cn) → {1, 2, . . . , 2n} an edge-magic total labeling of Cn.

Then there is some integer k such that f(xi) + f(xixi+1) + f(xi+1) = k for every i = 1, 2, . . . , n.

Furthermore, in the constructions provided in [5], the element 2n is always assigned as an edge label.

Now we de�ne a type (0, 1, 1) labeling ℓ : E ∪ F → {1, 2, . . . , 4n+ 2} as follows.

Let ℓ(F0) = 4n + 1, ℓ(Fn+1) = 4n + 2, ℓ(uivi) = f(xi), and ℓ(Fi) = f(xixi+1) for i = 1, 2, . . . , n.

We have used the labels {1, 2, . . . , 2n} ∪ {4n + 1, 4n + 2}. Since the element 2n was assigned to an

edge of Cn under the edge-magic total labeling f , the labeling ℓ assigns the element 2n to a face Ft

for some t ∈ {1, 2, . . . , n}.
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Fig. 4. A type (0, 1, 1) face-magic labeling of Y4

The labeling can be completed from a 2 × n magic rectangle M = [mi,j] in the following way.

First, add 2n to every entry in M. Necessarily, the column sums are σ = 6n + 1 and the row sums

are ρ = 3n2+n/2. WLOG, we may assume the �rst column of M is [4n 2n+1]T . Let ℓ(utut+1) = 4n

and ℓ(vtvt+1) = 2n + 1. Now, form an arbitrary bijection between the remaining columns of M to

the pairs (uiui+1, vivi+1) for i ∈ {1, 2, . . . , n} \ {t} so that the �rst label in each pair is always taken

from the �rst row of M. Finally, complete the construction by swapping the labels of Ft and vtvt+1

so that ℓ(Ft) = 2n+ 1 and ℓ(vtvt+1) = 2n.

Clearly, ℓ is a bijection, so it remains to check the weights. We begin with the two n-sided faces.

We have,

w(F0) = ℓ(F0) +
∑n

i=1 ℓ(uiui+1)

= 4n+ 1 +
∑n

j=1 m1,j

= 4n+ 1 + ρ

= 3n2 + 9n/2 + 1,

and
w(Fn+1) = ℓ(Fn+1) +

∑n
i=1 ℓ(vivi+1)

= 4n+ 2 +
∑2n

j=1m2,j − 1

= 4n+ 1 + ρ

= 3n2 + 9n/2 + 1.

Finally, let Fi be a 4-sided face. Then i ∈ {1, 2, . . . , n}, and we have

w(Fi) = ℓ(uiui+1) + ℓ(vivi+1) + ℓ(uivi) + ℓ(Fi) + ℓ(ui+1vi+1)

= σ + f(xi) + f(xixi+1) + f(xi+1)

= σ + k

= 6n+ 1 + k.

Therefore, ℓ is face-magic with µn = 3n2 + 9n/2 + 1 and µ4 = 6n + 1 + k. Since n ̸= 4, we have

proved the claim.

3.6. Type (1, 1, 1)

The generalized prism graph, Y m
n

∼= Pm□Cn was investigated by Baca in [1]. He proved the following.

Theorem 3.15 (Baca et al. [1]). The generalized prism graph Y m
n admits a type (1, 1, 1) face-magic

graph whenever m ≥ 2 and n ≥ 5.
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By corollary of Theorem 3.15, we know Yn admits a type (1, 1, 1) face-magic graph whenever n ≥ 5.

Therefore, we could simply provide labelings for the cases n = 3 and n = 4 and move on. However,

our construction is di�erent from the one in [1], so we believe there is value in including it.

Theorem 3.16. If n ≥ 3, then the prism graph Yn admits a type (1, 1, 1) face-magic labeling.

Proof. If n = 4, the labeling is shown in Figure 5. Let n ̸= 4, Yn = (V,E, F ), Cn = (x1, x2, . . . , xn),

and f : V (Cn) ∪ E(Cn) → {1, 2, . . . , 2n} an edge-magic total labeling of Cn. Then there is some

integer k such that f(xi) + f(xixi+1) + f(xi+1) = k for every i = 1, 2, . . . , n. De�ne a type (1, 1, 1)

labeling ℓ : V ∪ E ∪ F → {1, 2, . . . , 6n+ 2} as follows.

26

1117

14 4

199

1 21

8

24 10

6

13

3

5

18

2

12

15

7

16

23

22

20 25

Fig. 5. Type (1, 1, 1) face-magic labeling of Y4

Let ℓ(F0) = 6n+1, ℓ(Fn+1) = 6n+2, ℓ(uivi) = f(xi), and ℓ(Fi) = f(xixi+1) for i = 1, 2, . . . , n. We

have used the labels {1, 2, . . . , 2n} ∪ {6n + 1, 6n + 2}. WLOG, we may assume ℓ(Ft) = 2n for some

t ∈ {1, 2, . . . , n}.
The labeling can be completed from a 2 × 2n magic rectangle M = [mi,j] in the following way.

First, add 2n to every entry in M. Necessarily, the column sums are σ = 8n + 1 and the row sums

are ρ = n(8n+1). WLOG, we may assume the �rst column of M is [6n 2n+1]T . Let ℓ(utut+1) = 6n

and ℓ(vtvt+1) = 2n+1. Now, form an arbitrary bijection between the remaining columns of M to the

pairs (ui, vi) for i ∈ {1, 2, . . . , n} and (uiui+1, vivi+1) for i ∈ {1, 2, . . . , n} \ {t} so that the �rst label

in each pair is always taken from the �rst row of M. Finally, complete the construction by swapping

the labels of Ft and vtvt+1 so that ℓ(Ft) = 2n+ 1 and ℓ(vtvt+1) = 2n.

Clearly, ℓ is a bijection, so it remains to check the weights. We begin with the two n-sided faces.

We have,

w(F0) = ℓ(F0) +
∑n

i=1 ℓ(ui) +
∑n

i=1 ℓ(uiui+1)

= 6n+ 1 +
∑2n

j=1m1,j

= 6n+ 1 + ρ

= 8n2 + 7n+ 1,

and

w(Fn+1) = ℓ(Fn+1) +
∑n

i=1 ℓ(vi) +
∑n

i=1 ℓ(vivi+1)

= 6n+ 2 +
∑2n

j=1m2,j − 1

= 6n+ 1 + ρ

= 8n2 + 7n+ 1.
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Finally, let Fi be a 4-sided face. Then i ∈ {1, 2, . . . , n}, and we have

w(Fi) = ℓ(ui) + ℓ(vi) + ℓ(ui+1) + ℓ(vi+1) + ℓ(uiui+1) + ℓ(vivi+1) + ℓ(uivi) + ℓ(Fi) + ℓ(ui+1vi+1)

= 3σ + f(xi) + f(xixi+1) + f(xi+1)

= 3σ + k

= 3(8n+ 1) + k.

Therefore, ℓ is face-magic with µn = 8n2 + 7n + 1 and µ4 = 3(8n + 1) + k. Since n ̸= 4, we have

proved the claim.

4. General (a, b, c)

Now we turn our attention to the case where a, b, c can be any nonnegative integers. In [6], Lih

describes two ways that one can use one or more face-magic labelings to produce a new face-magic

labeling of a di�erent type.

Lemma 4.1 (Lih [6]). Let G admit face-magic labelings of types (a, b, c) and (a′, b′, c′). Then G also

admits a face-magic labeling of type (a+ a′, b+ b′, c+ c′).

Lemma 4.2 (Lih [6]). Let a, b, c, k, k′, k′′ be nonnegative integers. If G admits a type (a, b, c) face-

magic labeling, then G also admits a type (a+ 2k, b+ 2k′, c+ 2k′′) face magic labeling.

Using these two Lemmas in conjunction with Theorem 3.1, one can obtain quite a variety of face-

magic labelings. We will in fact obtain a complete characterization of face-magic labelings of type

(a, b, c) for nonnegative a, b, c. To do so, we will need to obtain a handful of new labelings.

To begin, Lemma 4.1 can be used to form a variety of di�erent face-magic labelings. We will

restrict our attention to those which are useful in proving our characterization result.

Lemma 4.3. The prism graph Yn admits face-magic labelings of type (0, 2, 1) for all n, type (1, 2, 0)

for all n, type (1, 2, 1) for all n, and type (2, 0, 1) for n ≡ 2 (mod 4).

Proof. The type (0, 2, 1), (1, 2, 0), and (1, 2, 1) face-magic labelings can be found by combining face-

magic labelings of types (0, 1, 0), (1, 1, 0), and (0, 1, 1), each of which exist for all n ≥ 3. The type

(2, 0, 1) face-magic labeling for n ≡ 2 (mod 4) follows from combining face-magic labelings of types

(1, 0, 1) and (1, 0, 0).

We will now �nd some labelings which do not result immediately from Theorem 3.1 and Lemmas

4.1, 4.2 but which nevertheless exist.

Lemma 4.4. If n ̸≡ 0 (mod 4), then the prism graph Yn admits a type (2, 0, 1) face-magic labeling.

Proof. This is true for n ≡ 2 (mod 4) by Lemma 4.3. Therefore, we restrict to odd n. The labeling

corresponding to n = 3 can be found in Figure 6. Therefore let n ≥ 5, and let ℓ be given by
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ℓ(F0) = {5n+ 2}, ℓ(Fn+1) = {1}, ℓ(Fi) = {5n+ 2− i} for 1 ≤ i ≤ n, and

ℓ(ui) =



{
n+ 1 + i, 6n+3−i

2

}
1 ≤ i ≤ n− 2, i is odd,{

n+ 1 + i, 5n+3−i
2

}
2 ≤ i ≤ n− 3, i is even,

{n+ 1, 2n+ 2} i = n− 1,{
n−1
2
, 5n+3

2

}
i = n.

ℓ(vi) =


{i+ 1, 4n+ 2− i} 1 ≤ i ≤ n−5

2
,

{i+ 2, 4n+ 1− i} n−3
2

≤ i ≤ n− 2,

{2n, 3n+ 2} i = n− 1,{
2n+ 1, 7n+7

2

}
i = n.
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Fig. 6. A type (2, 0, 1) face-magic labeling of Y3

Note that the labels assigned to the vertices ui form the set {(n−1)/2, n+1, ..., 2n−1, 2n+2, ..., 3n+

1}, and the labels assigned to vertices vi form the set {2, ..., (n−3)/2, (n+1)/2, ..., n, 2n, 2n+1, 3n+

2, ..., 4n+ 1}. These sum to 4n2 + n−1
2

and 4n2 + 11n+1
2

respectively. Therefore, we see that the two

n-sided faces each have a weight of 4n2+ 11n+3
2

. (In the case n = 5, the �rst line of the label for ℓ(vi)

is ignored. Furthermore, note that 2 = (n − 1)/2 and 4n + 1 = 7n+7
2

. Therefore the labels assigned

to vertices vi are {3, 4, 5, 10, 11, 17, 18, 19, 20, 21}, which sum to 128 = 4n2 + 11n+1
2

. Thus the same

argument holds.) It can be veri�ed that each 4-sided face has a weight of 41n+27
2

. Thus, ℓ is a type

(2, 0, 1) face magic labeling of Yn.

Lemma 4.5. If n ̸≡ 0 (mod 4), then the prism graph Yn admits a type (0, 0, 3) face-magic labeling.

Proof. The columns of a 3 × n magic rectangle form a face-magic labeling of type (0, 0, 3) for odd

n. Therefore, we focus on the case where n ≡ 2 (mod 4). Let n = 2k, with k ≥ 3 odd, and let

f : {1, ..., n+ 1} → ({1, ..., 3n+ 6})3 be given by

f(i) =

{
(2i− 1, 2n+ 4− i, 2n+ 6 + k − i) 1 ≤ i ≤ k + 1,

(2i− n− 2, 2n+ 4− i, 3n+ 7 + k − i) k + 2 ≤ i ≤ n+ 1.
(2)

Let f1, f2, f3 be the projections maps, let Xj be the image of {1, ..., n + 1} under fj, let Yi =

{f1(i), f2(i), f3(i)}, and let si = f1(i) + f2(i) + f3(i). We observe that f1, f2, f3 are each injections,
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and X1 = {1, ..., n+1}, X2 = {n+3, ..., 2n+3}, and X3 = {2n+5, ..., 3n+5}. In addition, si = 9k+9

for all i. Now, note that 2n + 4 < 9k+9
2

< 3n + 6 for all positive n, and 9k+9
2

∈ Z for all odd k.

Therefore, f3(i) =
9k+9
2

for some i. Let f−1
3 (9k+9

2
) = i∗. Note that f1(i

∗) + f2(i
∗) = f3(i

∗) = 9k+9
2

.

We now form our (0, 0, 3) labeling as follows:

ℓ(Fi) =


Yi 1 ≤ i ≤ n, i ̸= i∗,

Yn+1 i = i∗ unless i∗ = n+ 1,

{n+ 2, 2n+ 4, f3(i
∗)} i = 0,

{3n+ 6, f1(i
∗), f2(i

∗)} i = n+ 1.

(3)

For 1 ≤ i ≤ n, w(Fi) = 9k + 9. For i ∈ {0, n+ 1}, w(Fi) = 3n+ 6 + 9k+9
2

.

Lemma 4.6. If n is odd, then the prism graph Yn admits a type (1, 0, 2) face-magic labeling.

Proof. Let n = 2k+1. Begin by considering the function f : {1, ..., n+2} → P({2n+1, ..., 4n+4})
given by

f(i) =

{
{2n+ 2i− 1, 4n+ 5− i} 1 ≤ i ≤ k + 2,

{2i+ n− 3, 4n+ 5− i} k + 3 ≤ i ≤ n+ 2.
(4)

One can note that the sums of elements in f(i) sum to 6n+4+ i for 1 ≤ i ≤ k+2 and 5n+2+ i for

k+3 ≤ i ≤ n+2. These form a set of consecutive integers from 5n+ k+5 to 6n+ k+6. A (1, 0, 2)

face-magic labeling of Yn can then be formed by taking a 1-antimagic labeling of type (1, 0, 0) and

assigning labels f(i) to the faces of Yn in complementary fashion.

We are now prepared to state and prove the generalization of Theorem 3.1.

Theorem 4.7. Let a, b, c be nonnegative integers, and let n ≥ 3. The prism graph Yn admits a

face-magic labeling of type (a, b, c) if and only if (a, b, c, n) is not

(i) (0, 0, 1, n) for any n,

(ii) (a, 0, 0, n) for odd a, n,

(iii) (a, 0, c, n) for any a, odd c, and n ≡ 0 (mod 4).

Proof. First note that the nonexistence of type (0, 0, 1) face-magic labelings is trivial, and that the

remaining nonexistence results are given in Theorems 3.5 and 3.11. To show that the rest of the

labelings do exist, we proceed by cases on the parities of a, b, c, as well as the equivalence class of n

(mod 4). By Theorem 3.1 and Lemma 4.2, we only need to consider the following cases:

Case 1. a, b, are even, c is odd

If b ≥ 2, a face-magic labeling is given by the type (0, 2, 1) face-magic labeling given in Lemma 4.3

and the application of Lemma 4.2. If b = 0 and n ≡ 0 (mod 4), then this is the case (a, 0, c, n) with

c odd and n ≡ 0 (mod 4), for which no face-magic labeling exists. Otherwise if b = 0, (a, b, c) ̸=
(0, 0, 1), and n ̸≡ 0 (mod 4), then a face-magic labeling is obtained by the type (2, 0, 1) and (0, 0, 3)

face-magic labelings given in Lemmas 4.4, 4.5 and the application of Lemma 4.2.

Case 2. a, n are odd, b, c are even
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If b = c = 0 then this is the case (a, 0, 0, n) for odd a, n and no face-magic labeling exists.

Otherwise, a face-magic labeling is given by the type (1, 2, 0) and (1, 0, 2) face-magic labelings given

in Lemmas 4.3, 4.6 and the application of Lemma 4.2.

Case 3. a, c are odd, b is even, n ≡ 0 (mod 4)

If b = 0, then this is the case (a, 0, c, n) with c odd and n ≡ 0 (mod 4), for which no face-magic

labeling exists. Otherwise, a face-magic labeling is given by the type (1, 2, 1) face-magic labeling

given in Lemma 4.3 and the application of Lemma 4.2.

5. Concluding Remarks

We begin with a brief remark on the construction of type (1, 1, 1) face-magic labelings in Theorem

3.16. When n is even, the construction in the proof of Theorem 3.16 is similar to combining a type

(0, 1, 1) face-magic labeling with a type (1, 0, 0) face-magic labeling using Lemma 4.1. When n is

odd, a type (1, 1, 1) face-magic labeling can also be obtained by combining a type (1, 0, 1) face-magic

labeling with a type (0, 1, 0) face-magic labeling. However, given the lack of elegance in the given

(0, 1, 0) face-magic labeling, the construction in the proof of Theorem 3.16 is here much preferred

for odd n. On a related note, an improved construction of the type (0, 1, 0) labeling for odd prisms

would be welcome.

There are several possible ways this research could be extended. For instance, one could attempt to

provide a complete characterization of type (a, b, c) face-magic labelings for other families of graphs.

Two natural choices include generalized prisms and disjoint unions of prisms. One special bene�t of

the disjoint union of prisms is that the same label exchanging method that proved useful here would

also apply to disjoint unions of prisms. However, the fact that these graphs are disconnected means

that the embedding may have a signi�cant impact on whether or not the graph admits a face-magic

labeling. Therefore, we pose two open problems. Let mYn refer to the disjoint union of m copies of

Yn.

Problem 5.1. Can the ordered tuples (a, b, c,m, n) for which the generalized prism Y m
n admits a

type (a, b, c) face-magic labeling be completely determined?

Problem 5.2. Can the ordered tuples (a, b, c,m, n) for which some embedding of the disjoint union

mYn admits a type (a, b, c) face-magic labeling be completely determined?
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