Here we consider string matching problems that arise naturally in applications to music retrieval. The \( \delta \)-Matching problem calculates, for a given text \( T_{1..n} \) and a pattern \( P_{1..m} \) on an alphabet of integers, the list of all indices \( \mathcal{I}_\delta = \{1 \leq i \leq n-m+1 : \max_{j=1}^m \{|P_j – T_{i+j-1}| \leq \delta\}\} \). The \( \gamma \)-Matching problem computes, for given \( T \) and \( P \), the list of all indices \( \mathcal{I}_\gamma = \{1 \leq i \leq n-m+1 : \sum_{j=1}^m |P_j – T_{i+j-1}| \leq \gamma\} \). In this paper, we extend the current result on the different matching problems to handle the presence of “\emph{don’t care}” symbols. We present efficient algorithms that calculate \( \mathcal{I}_\delta \), \( \mathcal{I}_\gamma \), and \( \mathcal{I}_{(\delta,\gamma)} = \mathcal{I}_\delta \cap \mathcal{I}_\gamma \) for pattern \( P \) with occurrences of “don’t cares”.