Orthogonal Designs of Kharaghani Type: \(I\)

Christos Koukouvinos1, Jennifer Seberry2
1Department of Mathematics National Technical University of Athens Zografou 15773, Athens Greece
2School of IT and Computer Science University of Wollongong Wollongong, NSW, 2522 Australia

Abstract

We use an array given in H. Kharaghani, “Arrays for orthogonal designs”, J. Combin. Designs, \(8 (2000), 166-173\), to obtain infinite families of \(8\)-variable Kharaghani type orthogonal designs, \(OD(8t; k_1, k_1, k_1, k_1, k_2, k_2, k_2, k_2)\), where \(k_1\) and \(k_2\) must be the sum of two squares. In particular, we obtain infinite families of \(8\)-variable Kharaghani type orthogonal designs, \(OD(8t; k, k, k, k, k, k, k, k)\). For odd \(t\), orthogonal designs of order \(\equiv 8 \pmod{16}\) can have at most eight variables.