Let \(G\) be a finite abelian group with exponent \(n\). Let \(s(G)\) denote the smallest integer \(l\) such that every sequence over \(G\) of length at least \(l\) has a zero-sum subsequence of length \(n\). For \(p\)-groups whose exponent is odd and sufficiently large (relative to Davenport’s constant of the group) we obtain an improved upper bound on \(s(G)\), which allows to determine \(s(G)\) precisely in special cases. Our results contain Kemnitz’ conjecture, which was recently proved, as a special case.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.