The asymptotic volume of the Birkhoff polytope

E. Rodney Canfield1, Brendan D. McKay2
1Department of Computer Science University of Georgia Athens, GA 30602, USA
2Department of Computer Science Australian National University Canberra ACT 0200, Australia

Abstract

Let \( m, n \geq 1 \) be integers. Define \( \mathcal{T}_{m,n} \) to be the <i>transportation polytope</i> consisting of the \( m \times n \) non-negative real matrices whose rows each sum to \( 1 \) and whose columns each sum to \( m/n \). The special case \( \mathcal{B}_n = \mathcal{T}_{n,n} \) is the much-studied <i>Birkhoff-von Neumann polytope</i> of doubly-stochastic matrices. Using a recent asymptotic enumeration of non-negative integer matrices (Canfield and McKay, 2007), we determine the asymptotic volume of \( \mathcal{T}_{m,n} \) as \( n \to \infty \) with \( m = m(n) \) such that \( m/n \) neither decreases nor increases too quickly. In particular, we give an asymptotic formula for the volume of \( \mathcal{B}_n \).