An important problem in analytic and geometric combinatorics is estimating the number of lattice points in a compact convex set in a Euclidean space. Such estimates have numerous applications throughout mathematics. In this note, we exhibit applications of a particular estimate of this sort to several counting problems in number theory: counting integral points and units of bounded height over number fields, counting points of bounded height over positive definite quaternion algebras, and counting points of bounded height with a fixed support over global function fields. Our arguments use a collection of height comparison inequalities for heights over a number field and over a quaternion algebra. We also show how these inequalities can be used to obtain existence results for points of bounded height over a quaternion algebra, which constitute non-commutative analogues of variations of the classical Siegel’s lemma and Cassels’ theorem on small zeros of quadratic forms.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.