Counting staircases in integer compositions

Aubrey Blecher1, Toufik Mansour 2
1School of Mathematics, University of Witwatersrand, Johannesburg, South Africa
2Department of Mathematics, University of Haifa, 3498838 Haifa, Israel

Abstract

The main theorem establishes the generating function \(F\) which counts the number of times the staircase \(1 + 2 + 3 + \cdots + m^+\) fits inside an integer composition of \(n\).
\[
F = \frac{k_m – \frac{q x^m y}{1-x} k_{m-1}}{(1-q)x^{\binom{m+1}{2}} \left( \frac{y}{1-x} \right)^m + \frac{1-x-xy}{1-x} \left( k_m – \frac{q x^m y}{1-x} k_{m-1} \right)}.
\]
where
\[
k_m = \sum_{j=0}^{m-1} x^{mj – \binom{j}{2}} \left( \frac{y}{1-x} \right)^j.
\]

Here \(x\) and \(y\) respectively track the composition size and number of parts, whilst \(q\) tracks the number of such staircases contained.

Keywords: composition, generating functio