The asymptotic number of simple singular vector tuples of a cubical tensor

Jay Pantone1
1Department of Mathematics, Dartmouth College, Hanover, New Hampshire USA

Abstract

S. Ekhad and D. Zeilberger recently proved that the multivariate generating function for the number of simple singular vector tuples of a generic \(m_1 \times · · · \times m_d\) tensor has an elegant rational form involving elementary symmetric functions, and provided a partial conjecture for the asymptotic behavior of the cubical case \(m_1 = · · · = m_d\). We prove this conjecture and further identify completely the dominant asymptotic term, including the multiplicative constant. Finally, we use the method of differential approximants to conjecture that the subdominant connective constant effect observed by Ekhad and Zeilberger for a particular case in fact occurs more generally