The extreme high temperature and erosive environment service environment in bridge construction puts forward higher requirements for high performance concrete and other aspects of performance. In this paper, compound mineral admixture is selected as a research breakthrough, and X-ray diffraction analysis (XRD) and Raman spectroscopy are used to explore the micromechanical behavior of compound mineral admixture in high-performance concrete. In the Raman spectral analysis, the stress distribution of the fitted curve of the compound mineral admixture is more flat and uniform, and the offset of the G’ peak position is higher than that of the reference concrete and the single-mineral-admixture concrete, and the stress can reach 2.5 MPa under 1% strain, showing good interfacial bond, stress transfer efficiency, etc. The physical phase data of the XRD also shows the frost resistance of compound mineral admixture, with the ability to mitigate carbon dioxide, and the ability to reduce the carbon footprint of the concrete, with the ability to reduce the carbon dioxide. The XRD data also show the frost resistance of the compound mineral admixture, which has the performance of slowing down carbonization. The NSGA-II algorithm is introduced and improved to propose a concrete proportion optimization model. The final evaluation function converges from 35 generations and the final value is 0.4558, which achieves the adaptive optimization of compound mineral admixture.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.