The domination chain \(\iota_r(G) \leq \gamma(G) \leq \iota(G) \leq \beta_o(G) \leq \Gamma(G) \leq IR(G)\), which holds for any graph \(G\), is the subject of much research. In this paper, we consider the maximum number of edges in a graph having one of these domination chain parameters equal to \(2\) through a unique realization. We show that a specialization of the domination chain still holds in this setting.