The Dual of a Circle Order Is Not Necessarily a Circle Order

Graham Brightwell1, Edward R.Scheinerman2
1Department of Mathematics London School of Economics Houghton Street, London WC2A 2AE U.K.
2 Department of Mathematical Sciences The Johns Hopkins University Baltimore, Maryland 21218 U.S.A.

Abstract

A partially ordered set \(P\) is called a circle order if one can assign to each element \(a \in P\) a circular disk in the plane \({C_a}\), so that \(a < b\) iff \(C_a \subset C_b\). It is known that the dual of every finite circle order is a circle order. We show that this is false for infinite circle orders.