In [Discrete Math. 46 (1983) 191 – 198], the concept of inclusive edge connectivity was introduced and discussed. Given a vertex \(v \in V(G)\), the inclusive edge connectivity of \(v\), denoted by \(\lambda_i(v,G)\), is the minimum number of edges whose deletion results in a subgraph of \(G\) in which \(v\) is a cut-vertex. Define
\[\lambda_i(v,G) = \min\{\lambda_i(v,G) : v \in V(G), \text{ and } d_G(v) \geq 2\}\]
to be the inclusive edge connectivity of \(G\). Extremal problems on \(\lambda_i(G)\) are studied in this paper.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.