Some Nonexistence Results for \(7\)-Dimensional Ternary Linear Codes

Rumen N.Daskalov1
1Department of Mathematics Technical University 5300 Gabrovo, Bulgaria

Abstract

Let \(d_3(n,k)\) be the maximum possible minimum Hamming distance of a ternary linear \([n, k, d; 3]\) code for given values of \(n\) and \(k\). The nonexistence of \([142, 7, 92; 3]\), \([162, 7, 106; 3]\), \([165, 7, 108; 3]\), and \([191, 7, 125; 3]\) codes is proved.