We first prove that for any fixed \(k\), a cubic graph with few short cycles contains a \(K_{k}\)-minor. This is a direct generalization of a result on girth by Thomassen. We then use this theorem to show that for any fixed \(k\), a random cubic graph contains a \(K_{k}\)-minor asymptotically almost surely.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.