Anti-Ramsey Numbers for Small Complete Bipartite Graphs

Maria Axenovich1, Tao Jiang2
1Department of Mathematics Iowa State University Ames, IA 50011, USA
2Mathematical Sciences Michigan Technological University Houghton, MI 49931, USA

Abstract

Given two graphs \(G\) and \(H \subseteq G\), we consider edge-colorings of \(G\) in which every copy of \(H\) has at least two edges of the same color. Let \(f(G,H)\) be the maximum number of colors used in such a coloring of \(E(G)\). Erdős, Simonovits, and Sós determined the asymptotic behavior of \(f\) when \(G = K_n\), and \(H\) contains no edge \(e\) with \(\chi(H – e) \leq 2\). We study the function \(f(G, H)\) when \(G = K_n\), or \(K_{m,n}\), and \(H\) is \(K_{2,t}\).