Ramsey Numbers for Triangles versus Almost-Complete Graphs

Brendan D.McKay1, Konrad Piwakowski2, Stanislaw P.Radziszowski 3
1Deptartment of Computer Science Australian National University Canberra, ACT 0200, Australia
2Dept. of Foundations of Informatics Technical University of Gdarisk 80-952 Gdarisk, Poland
3Depariment of Computer Science Rochester Institute of Technology Rochester, NY 14623, USA

Abstract

We show that, in any coloring of the edges of \(K_{36}\), with two colors, there exists a triangle in the first color or a monochromatic \(K_{10}-e\) (\(K_{10}\) with one edge removed) in the second color, and hence we obtain a bound on the corresponding Ramsey number, \(R(K_3, K_{10}-e) \leq 38\). The new lower bound of \(37\) for this number is established by a coloring of \(K_{36}\) avoiding triangles in the first color and \(K_{10}-e\) in the second color. This improves by one the best previously known lower and upper bounds. We also give the bounds for the next Ramsey number of this type, \(42 \leq R(K_3, K_{11}-e) \leq 47\).