The Ehrenfeucht-Fraissé Game for Paths and Cycles

Jason Brown1, Richard Hoshino1
1Department of Mathematics and Statistics Dalhousie University Halifax, Nova Scotia, Canada B3H 3J5

Abstract

Let \(L\) and \(R\) be two graphs. For any positive integer \(n\), the Ehrenfeucht-Fraissé game \(G_n(L, R)\) is played as follows: on the \(i\)-th move, with \(1 \leq i \leq n\), the first player chooses a vertex on either \(L\) or \(R\), and the second player responds by choosing a vertex on the other graph. Let \(l_i\) be the vertex of \(L\) chosen on the \(i^{th}\) move, and let \(r_i\) be the vertex of \(R\) chosen on the \(i^{th}\) move. The second player wins the game iff the induced subgraphs \(L\{l_1,l_2,…,l_n\}\) and \(R\{r_1,r_2,…,r_n\}\) are isomorphic under the mapping sending \(l_i\) to \(r_i\). It is known that the second player has a winning strategy if and only if the two graphs, viewed as first-order logical structures (with a binary predicate E), are indistinguishable (in the corresponding first-order theory) by sentences of quantifier depth at most \(n\). In this paper we will give the first complete description of when the second player has a winning strategy for \(L\) and \(R\) being both paths or both cycles. The results significantly improve previous partial results.