Dirac showed that a \(2\)-connected graph of order \(n\) with minimum degree \(\delta\) has circumference at least \(\min\{2\delta, n\}\). We prove that a \(2\)-connected, triangle-free graph \(G\) of order \(n\) with minimum degree \(\delta\) either has circumference at least \(\min\{4\delta – 4, n\}\), or every longest cycle in \(G\) is dominating. This result is best possible in the sense that there exist bipartite graphs with minimum degree \(\delta\) whose longest cycles have length \(4\delta – 4\), and are not dominating.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.