Long Cycles in \(2\)-Connected Triangle-Free Graphs

D. Bauer1, N. Kahl2, L. Mcguire3, E. Schmeichel4
1Department of Mathematical Sciences Stevens Institute of Technology Hoboken, NJ 07030
2 Department of Mathematics and Computer Science Seton Hall University South Orange, NJ 07079
3Department of Mathematical Sciences Muhlenberg College Allentown, PA 18104
4 Department of Mathematics San Jose State University San Jose, CA 95192

Abstract

Dirac showed that a \(2\)-connected graph of order \(n\) with minimum degree \(\delta\) has circumference at least \(\min\{2\delta, n\}\). We prove that a \(2\)-connected, triangle-free graph \(G\) of order \(n\) with minimum degree \(\delta\) either has circumference at least \(\min\{4\delta – 4, n\}\), or every longest cycle in \(G\) is dominating. This result is best possible in the sense that there exist bipartite graphs with minimum degree \(\delta\) whose longest cycles have length \(4\delta – 4\), and are not dominating.