Contents

-

On the Non-Existence of a Maximal Partial Spread of Size 76 in PG(3,9)

O. Heden1, S. Marcugini2, F. Pambianco2, L. Storme3
1Department of Mathematics, KTH, S-100 44 Stockholm, Sweden
2Dipartimento di Matematica e Informat- ica, Universita di Perugia, Via Vanvitelli, 1, 106123 Perugia, Italy.
3Ghent University, Department of Pure Mathematics and Com- puter Algebra, Krijgslaan 281 – S22, 9000 Ghent, Belgium.

Abstract

We prove the non-existence of maximal partial spreads of size 76 in PG(3,9). Relying on the classification of the minimal blocking sets of size 15 in PG(2,9) [22], we show that there are only two possibilities for the set of holes of such a maximal partial spread. The weight argument of Blokhuis and Metsch [3] then shows that these sets cannot be the set of holes of a maximal partial spread of size 76. In [17], the non-existence of maximal partial spreads of size 75 in PG(3,9) is proven. This altogether proves that the largest maximal partial spreads, different from a spread, in PG(3,q=9) have size q2q+2=74.