It is shown that for \(2 \leq t \leq n-3\), a strict \(t\)-SB\((n,n-1)\) design does not exist, but for \(n \geq 3\), a non-strict \(2\)-SB\((n,n-1)\) design exists. The concept of large sets for Steiner triple systems is extended to SB designs and examples of large sets for SB designs are given.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.