Contents

-

Extremal Values for the Maximum Degree in a Twin-Free Graph

Iréne Charon1, Olivier Hudry2, Antoine Lobstein3
1 Institut TELECOM – TELECOM ParisTech & Centre National de la Recherche Scientifique LTCI UMR 5141 46, rue Barrault, 75634 Paris Cedex 13 – France
2 Institut TELECOM – TELECOM ParisTech & Centre National de la Recherche Scientifique LTCI UMR 5141 46, rue Barrault, 75634 Paris Cedex 13 – France
3 Centre National de la Recherche Scientifique LTCI UMR 5141 & Institut TELECOM – TELECOM ParisTech 46, rue Barrault, 75634 Paris Cedex 13 – France

Abstract

Consider a connected undirected graph G=(V,E) and an integer r1; for any vertex vV, let Br(v) denote the ball of radius r centred at v, i.e., the set of all vertices linked to v by a path of at most r edges. If for all vertices vV, the sets Br(v) are different, then we say that G is r-twin-free.

In r-twin-free graphs, we prolong the study of the extremal values that can be reached by some classical parameters in graph theory, and investigate here the maximum degree.