An \((n \times n)\) matrix \(A = (a_{ij})\) is called a Toeplitz matrix
if it has constant values along all diagonals parallel to the main diagonal.
A directed Toeplitz graph is a digraph with Toeplitz adjacency matrix.
In this paper, we discuss conditions for the existence of Hamiltonian cycles
in directed Toeplitz graphs.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.