Hosoya Polynomials of Twisted Toroidal Polyhexes

Shou-Jun Xu1, Hai-Yang Chen1, Qiu-Xia Zhang1, Liangping Tu2
1School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 780000, China
2School of Science, University of Science and Technology, Anshan, Liaoning 114051, China

Abstract

The Hosoya polynomial of a graph \(G\) with vertex set \(V(G)\) is defined as \(H(G, z) = \sum_{u,v \in V(G)} x^{d_G(u,v)}\), where \(d_G(u,v)\) is the distance between vertices \(u\) and \(v\). A toroidal polyhex \(H(p,q,t)\) is a cubic bipartite graph embedded on the torus such that each face is a hexagon, described by a string \((p,q,t)\) of three integers \((p \geq 2, q \geq 1, 0 \leq t \leq p-1)\). In this paper, we derive an analytical formula for calculating the Hosoya polynomial of \(H(p,q,t)\) for \(t = 0\) or \(p\leq 2q\) or \(p \leq q+t\). Notably, some earlier results in [2, 6, 26] are direct corollaries of our main findings.