On \(R’\) Index of a Graph

Xiaojuan Jiang1, Guihua Huang1, Meijun Kuang1, Hanyuvan Deng1
1College of Mathematics and Computer Science, Hunan Normal University, Changsha, Hunan 410081, P. R. China

Abstract

The Randić index \(R\) is an important topological index in chemistry. In order to attack some conjectures concerning the Randić index, a modification \(R’\) of this index was introduced by Dvorak et al. [6]. The \(R’\) index of a graph \(G\) is defined as the sum of the weights \(\frac{1}{\max\{{d(u)d(v)}\}}\) of all edges \(uv\) of \(G\), where \(d(u)\) denotes the degree of a vertex \(u\) in \(G\). We first give a best possible lower bound of \(R’\) for a graph with minimum degree at least two and characterize the corresponding extremal graphs, and then we establish some relations between \(R’\) and the chromatic number, the girth of a graph.