Let \(G\) be a simple connected graph with vertex set \(V\) and diameter \(d\). An injective function \(c: V\rightarrow \{1,2,3,\ldots\}\) is called a radio labeling of \(G\) if \({|c(x) c(y)|+d(x,y)\geq d+1}\) for all distinct \(x,y\in V\), where \(d(x,y)\) is the distance between vertices \(x\) and \(y\). The largest number in the range of \(c\) is called the span of the labeling \(c\). The radio number of \(G\) is the minimum span taken over all radio labelings of \(G\). For a fixed vertex \(z\) of \(G\), the sequence \((l_1,l_2,\ldots,l_r)\) is called the level tuple of \(G\), where \(l_i\) is the number of vertices whose distance from \(z\) is \(i\). Let\(J^k(l_1,l_2,\ldots,l_r)\) be the wedge sum (i.e. one vertex union) of \(k\geq2\) graphs having same level tuple \((l_1,l_2,\ldots,l_r)\). Let \(J(\frac{l_1}{l’_1},\frac{l_2}{l’_2},\ldots,\frac{l_r} {l’_r})\) be the wedge sum of two graphs of same order, having level tuples \((l_1,l_2,\ldots,l_r)\) and \((l’_1,l’_2,\ldots,l’_r)\). In this paper, we compute the radio number for some sub-families of \(J^k(l_1,l_2,\ldots,l_r)\) and \(J(\frac{l_1}{l’_1},\frac{l_2}{l’_2},\ldots,\frac{l_r}{l’_r})\).
Definition 1. Let \(H\) be any graph. For a fixed \(z\in V(H)\), the level structure w.r.t. \(z\) is defined to be a partition of \(V(H)\) into subsets \[L_i(z,H):=\{v\in V(H) \ : \ d(z,v)=i\}\] called levels. In this case, vertex \(z\) is called a root vertex of \(H\).
Definition 2. For a fixed root \(z\in V(G)\), the mapping defined by \[l(v):=d(z,v)\] on \(V(G)\) is called the level function w.r.t. \(z\).
Definition 3. We say that a graph \(H\) has level tuple \((l_1,l_2,\ldots,l_r)\in N^r\) at \(z\), if \(l_i=|L_i(z,H)|\).
Definition 4. Let \(H_1, H_2, \ldots,H_{k\geq2}\) be graphs with level tuple \((l_1,l_2,\ldots,l_r)\) at \(z\in V(H_t)\) for all \(t\). Then \(J^k(l_1,l_2,\ldots,l_r)\) is defined to be the graph \(\cup_{t=1}^k H_t\), where \(H_t\cap H_{t’}=\{z\}\) for \(t\not=t’\). In other words, \(J^k(l_1,l_2,\ldots,l_r)\) is the wedge sum of \(H_t\).
Definition 5. Let \(H\) and \(H’\) be two graphs of same order with level tuples \((l_1,l_2,\ldots,l_r)\) and \((l’_1,l’_2,\ldots,l’_r)\) respectively, at \(z\in H\cap H’\). Then \(J\left(\frac{l_1}{l’_1},\frac{l_2}{l’_2},\ldots,\frac{l_r}{l’_r}\right)\) is defined to be the wedge sum of \(H\) and \(H’\).
In [10], authors compute the radio number of \(J^k(l_1,l_2,\ldots,l_r)\) for \(k\geq2\), by imposing the following condition on the tuple \((l_1,l_2,\ldots,l_r)\):Lemma 1. Let \(G=J^k(l_1,l_2,\ldots,l_r)\) and let \(z=x_0\), \(x_1,\ldots,x_{n-1}\) be an ordering of \(V(G)\) such that for \(p>0\),
Case 1: If \(k\) is even, then \(A=[B \ B \ \cdots \ B]\), where:
\[\begin{array}{rl} B=\left[\begin{array}{cc} r & \hspace{.3in} 1\\ r-1 & \hspace{.3in} 2\\ r-1 & \hspace{.3in} 1\\ \vdots & \hspace{.3in} \vdots\\ \theta+1 & \hspace{.3in} r-\theta\\ \theta+1 & \hspace{.3in} r-\theta-1\\ \vdots & \hspace{.3in} \vdots\\ \theta+1 & \hspace{.3in} 1\\ \theta & \hspace{.3in} \theta\\ \theta-1 & \hspace{.3in} \theta-1\\ \vdots & \hspace{.3in} \vdots\\ 2 & \hspace{.3in} 2\\ 1 & \hspace{.3in} \theta+1\\ 2 & \hspace{.3in} \theta+1\\ \vdots & \hspace{.3in} \vdots\\ r-\theta & \hspace{.3in} \theta+1\\ \vdots & \hspace{.3in} \vdots\\ 1 & \hspace{.3in} r-1\\ 2 & \hspace{.3in} r-1\\ 1 & \hspace{.3in} r\\ 1 & \hspace{.3in} 1 \end{array}\right] & \begin{array}{l} \eta(r,1) \\ \eta(r-1,2) \\ \eta(r-1,1) \\ \vdots \\ \eta(\theta+1,r-\theta) \\ \eta(\theta+1,r-\theta-1) \\ \vdots \\ \eta(\theta+1,1)\\ \alpha_{\theta} \\ \alpha_{\theta-1} \\ \vdots \\ \alpha_{2}\\ \eta(\theta+1,1) \\ \eta(\theta+1,2) \\ \vdots \\ \eta(\theta+1,r-\theta) \\ \vdots \\ \eta(r-1,1) \\ \eta(r-1,2) \\ \eta(r,1)\\ \alpha_{1} \end{array}\end{array}\] The entry on the right side of a row shows its multiplicity, which may be zero. It is not difficult to verify that the ordering given in the above matrix satisfies the desired conditions. Similarly we have:Case 2: If \(k\) is odd, then \(A=[C \ D \ C \ D \ \cdots \ C \ D \ C]\), where \(C\) and \(D\) are the following column matrices:
\[\begin{array}{rl} C=\left[\begin{array}{c} r\\1\\ \hline r-1\\2\\ \hline r-1\\1\\ \hline \vdots \\ \hline \theta+1\\r-\theta\\ \hline \theta+1\\r-\theta-1\\ \hline \vdots \\ \hline \theta+1 \\ 1 \\ \hline \theta \\ \theta-1 \\ \vdots \\ 2 \\ 1 \end{array}\right] & \begin{array}{l} \\ \eta(r,1) \\ \\ \eta(r-1,2) \\ \\ \eta(r-1,1) \\ \vdots \\ \\ \eta(\theta+1,r-\theta) \\ \\ \eta(\theta+1,r-\theta-1) \\ \vdots \\ \\ \eta(\theta+1,1)\\ \alpha_{\theta} \\ \alpha_{\theta-1} \\ \vdots \\ \alpha_{2}\\ \alpha_{1} \end{array}\end{array} , \ D=\begin{array}{rl} \left[\begin{array}{c} 1\\r\\ \hline 2\\r-1\\ \hline 1\\r-1\\ \hline \vdots\\ \hline r-\theta\\ \theta+1\\ \hline r-\theta-1\\ \theta+1\\ \hline \vdots\\ \hline 1\\ \theta+1\\ \hline \theta\\ \theta-1\\ \vdots\\2\\1\\ \end{array}\right] & \begin{array}{l} \\ \eta(r,1) \\ \\ \eta(r-1,2) \\ \\ \eta(r-1,1) \\ \vdots \\ \\ \eta(\theta+1,r-\theta) \\ \\ \eta(\theta+1,r-\theta-1) \\ \vdots \\ \\ \eta(\theta+1,1)\\ \alpha_{\theta} \\ \alpha_{\theta-1} \\ \vdots \\ \alpha_{2}\\ \alpha_{1} \end{array}\end{array}\] Again the entry on the right side of each row block shows its multiplicity. The above two cases establish the following result.Theorem 1. Let \(G=J^k(l_1,l_2,\ldots,l_r)\) with \(\sum_{i=1}^s \big(l_i-l_{r+1-i}\big)>0\) for all \(s=1,2,3,\ldots,\lfloor\frac{r+1}{2}\rfloor\). Then \[rn(G)=2+(n-1)(d+1)-2k\big[\sum_{s=1}^{r} sl_s\big].\]
The following result of [10] is an immediate consequence of Theorem 1.Corollary 1([10], Theorem 4). Let \(G=J^k(l_1,l_2,\ldots,l_r)\) with \(l_1>l_r\) and \(l_i\geq l_{r+1-i}\) for \(i=2,3,\ldots,\lfloor\frac{r+1}{2}\rfloor\). Then \[rn(G)=2+(n-1)(d+1)-2k\big[\sum_{s=1}^{r} sl_s\big].\]
For illustration, we present the above matrix for the family of graphs represented by \(J^3(3,1,2,1)\). We also provide vertex ordering \(x_0,x_1,\ldots,x_{n-1}\) and the optimal radio labeling, which are obtained from this matrix. We end this section by computing the radio number of a cactus graph using Theorem 1. A cactus is a graph whose maximal connected subgraphs without a cut-vertex are cycles or complete graphs on two vertices. Let \(G_{2p}\) be the graph obtained by adjoining even cycles \(C_{2p},C_{2p-2},\ldots, C_4\) as shown in Figure 3. Let \(J^kG_{2p}\) be the wedge sum of \(k\geq2\) copies of \(G_{2p}\). The level tuple of \(G_{2p}\) is \((l_1,l_2,\ldots,l_r)\), where \(l_i=1\) for \(i\in\Big\{\frac{s(2p-s+1)}{2} \ : \ 1\leq s\leq p-1\Big\}\) and \(l_i=2\) otherwise. For instance, the level tuple of \(G_8\) is \((2,2,2,1,2,2,1,2,1)\). The level tuple of \(G_{2p}\) satisfies the condition of Theorem 1. For \(J^kG_{2p})\), we have \(d=(p-1)(p+2)\), \(n=k(p^2-1)+1\) and \(\sum_{s=1}^{r} sl_s=\frac{p(p^2-1)(3p+2)}{12}\). Thus, we have: \[rn(J^kG_{2p})=2+\frac{k(3p^2+4p-6)(p^2-1)}{6}.\]Definition 6. Let \(G\) be any graph and let \(l\) be the level function defined on \(V(G)\) w.r.t. a vertex \(z\in G\). Then the sum \(w_z(G):=\sum_{v\in V(G)}l(v)\) is called the weight of the vertex \(z\).
Definition 7. The number \(w(G):=\min\{w_z(G) \ : z\in V(G) \}\) is called the weight of the graph \(G\). A vertex \(z\in V(G)\) is called a weight center of \(G\) if \(w_z(G)=w(G)\).
We use the following results which are proved in [10].Proposition 1. For \(z,u\in V(G)\), we have \[w_z(G)-w_u(G)\leq(n-2n_u)d(z,u),\] where \(n_u=\big|\{v\in V(G) \ : \ d(u,v)=d(u,z)+d(z,v)\}\big|\) and \(n=|V(G)|\). In particular, \(z\) is a weight center if \(n_u\geq n/2\) for all \(u\in V(G)\).
Theorem 2. Let \(G\) be any graph on \(n\) vertices having diameter \(d\). Then \[rn(G)\geq 2 +(n-1)(d+1)-2w(G).\]
The similar lower bound is determined in [12] for trees. We first establish the lower bound for the radio number of \(J(\frac{l_1}{l’_1},\frac{l_2}{l’_2},\ldots,\frac{l_r}{l’_r})\) using the above theorem.Proposition 2. Let \(G=J\left(\frac{l_1}{l’_1},\frac{l_2}{l’_2},\ldots,\frac{l_r}{l’_r}\right)\). Then \(w(G)=\sum_{s=1}^r s(l_s+l’_s)\) and consequently \[rn(G)\geq 2+(n-1)(d+1)-2\big[\sum_{s=1}^r s(l_s+l’_s)\big].\]
Proof. To prove our claim, it is sufficient to prove that the identified vertex \(z\) is a weight center of \(G\). For this, we use Proposition 1. Let \(u\in V(H)\). Then for any \(v\in V(H’)\), we have \(d(u,v)=d(u,z)+d(z,v)\). This means that \(n_u\geq |V(H’)|\) and consequently \(n_u\geq n/2\) for all \(u\in V(H)\). On the same lines, we have \(n_u\geq n/2\) for all \(u\in V(H’)\), showing that \(z\) is a weight center of \(G\). Hence the proof is complete.
Now we show that the above bound is optimal. For this, we use the following handy result.Lemma 2. Let \(G=J\left(\frac{l_1}{l’_1},\frac{l_2}{l’_2},\ldots,\frac{l_r}{l’_r}\right)\) and let \(z=x_0\), \(x_1,\ldots,x_{n-1}\) be a labeling of \(V(G)\) such that for \(p>0\),
Proof. Let \(p>q\geq0\) have different parity. Then \(x_p\), \(x_q\) belongs to different graphs, \(H\) and \(H’\). In this situation, we have \(d(x_p,x_q)=l(x_p)+l(x_q)\). Therefore: \[c(x_p)-c(x_q)+d(x_p,x_q)=(p-q)(d+1)-2\big[\sum_{s=q+1}^{p-1}l(x_s)\big].\] Since \(l(x_s)\leq r\) and \(d=2r\), we obtain: \[c(x_p)-c(x_q)+d(x_p,x_q)\geq d+(p-q)\geq d+1.\] Now let \(p>q\geq0\) have same parity. Then either \(x_p,x_q\in H\) or \(x_p,x_q\in H’\). In both cases, we can write \[c(x_p)-c(x_q)=(p-q)(d+1)-\big[\sum_{s=q}^{p-1}l(x_s)+l(x_{s+1})\big].\] Using condition 2 and the fact that \(d=2r\), we get \(c(x_p)-c(x_q)\geq(p-q)r\). Since \(p,q\) have same parity, we have \(p-q\geq2\). Thus \(c(x_p)-c(x_q)\geq d\), showing that \(c\) is indeed a radio labeling. Moreover, \(c(x_p)>c(x_q)\) for \(p>q\) and \(l(x_{n-1})=1\). Thus, we have \[span(c)=c(x_{n-1})=2+(n-1)(d+1)-2\sum_{s=1}^{n-1}l(x_s).\] Since \(w(G)=\sum_{s=1}^{n-1}l(x_s)\), from Theorem 2 and Proposition 2, we obtain the desired result.
Similar to the case of \(J^k(l_1,l_2,\ldots,l_r)\), we provide an ordering of the vertices of \(J\left(\frac{l_1}{l’_1},\frac{l_2}{l’_2},\ldots,\frac{l_r}{l’_r}\right)\) represented by \(x_0,x_1,\ldots,x_{n-1}\), which satisfies the conditions of Lemma 2. In this case, we construct the following matrix: \[A=\left(\begin{array}{cc} l(x_1) \ \ & l(x_2) \\ l(x_3) \ \ & l(x_4)\\ \vdots & \vdots \\ l(x_{n-2}) \ \ & l(x_{n-1}) \end{array}\right),\] where columns consist of the following entries, respectively: \[\underbrace{r,r,\ldots,r}_{l_r-times}, \ \underbrace{r-1,r-1,\ldots,r-1}_{l_{r-1}-times}, \ \ldots, \ \underbrace{2,2,\ldots,2}_{l_2-times}, \ \underbrace{1,1,\ldots,1}_{l_1-times},\] \[\underbrace{r,r,\ldots,r}_{l’_r-times}, \ \underbrace{r-1,r-1,\ldots,r-1}_{l’_{r-1}-times}, \ \ldots, \ \underbrace{2,2,\ldots,2}_{l’_2-times}, \ \underbrace{1,1,\ldots,1}_{l’_1-times}\] such that \(l(x_i)+l(x_{i+1})\leq r+1\) and \(l(x_{n-1})=1\). We compute the radio number of \(J\left(\frac{l_1}{l’_1},\frac{l_2}{l’_2},\ldots,\frac{l_r}{l’_r}\right)\) when:Theorem 3. Let \(G=J(\frac{l_1}{l’_1},\frac{l_2}{l’_2},\ldots,\frac{l_r}{l’_r})\) be as given in (6) and (7). Then \[rn(G)=2+(n-1)(d+1)-2\big[\sum_{s=1}^r s(l_s+l’_s)\big].\]
Proof. We only need to construct matrix \(A\) as mentioned above. The required matrix \(A=[C \ D]\), where: \[\begin{array}{rl} C=\left[\begin{array}{c} r\\r-1\\ \vdots \\ \theta+1 \\ \theta \\ \theta-1\\ \vdots \\ 1\\ 1 \\ 2 \\ \vdots \\ \theta-1 \\ \theta \end{array}\right] & \begin{array}{l} l_r\\l_{r-1}\\ \vdots \\ l_{\theta+1} \\ l’_{r+1-\theta} \\ l’_{r+2-\theta}\\ \vdots \\ l’_r\\ l_1-l’_r \\ l_2-l’_{r-1} \\ \vdots \\ l_{\theta-1}-l’_{r+2-\theta} \\ l_{\theta}-l’_{r+1-\theta} \end{array}\end{array} \mbox{ and } \begin{array}{rl} D=\left[\begin{array}{c} 1\\2\\ \vdots \\ r-\theta \\ r+1-\theta \\ r+2-\theta\\ \vdots \\ r\\ 2 \\ 3 \\ \vdots \\ \theta \\ 1 \end{array}\right] & \begin{array}{l} l_r\\l_{r-1}\\ \vdots \\ l_{\theta+1} \\ l’_{r+1-\theta} \\ l’_{r+2-\theta}\\ \vdots \\ l’_r\\ l’_2-l_{r-1} \\ l’_3-l_{r-2} \\ \vdots \\ l’_{\theta}-l_{r+1-\theta} \\ l’_1-l_{r} \end{array}\end{array}\] Evidently the above matrix satisfies the desired conditions. Hence the proof.
The above matrix, corresponding vertex ordering \(x_0,x_1\ldots,x_{n-1}\) and the optimal radio labeling for \(J(\frac{3}{2},\frac{2}{2},\frac{1}{1},\frac{1}{2})\), are shown in Figure 4. We conclude by computing the radio number of a caterpillar using the above theorem. A caterpillar is a tree such that removing all its leaves, results in a path graph. Let \(CP(p_1,p_2,\ldots,p_s)\) be the caterpillar obtained from the path graph \(v_1v_2,v_2v_3,\ldots,v_{s-1}v_s\) by attaching \(p_i\geq0\) new terminal vertices to the vertex \(v_i\). For \(p_1,p_r>0\), the caterpillar \[G=CP(p_1,p_2,\ldots,p_{r-1},p_r+p_1,p_2,p_3,\ldots,p_r)\] is an example of \(J\left(\frac{1+p_1}{1+p_r},\frac{1+p_2}{1+p_{r-1}},\ldots,\frac{1+p_{r-1}}{1+p_2},\frac{p_r}{p_1}\right)\). For the caterpillar \(G\), we have \(n=2(r+p)-1\), \(d=2r\), \(w(G)=r^2+(p-1)r+p\) and \[rn(G)=2r(r+p), \] where \(p=p_1+p_2+\cdots+p_r\).Acknowledgments : The second author was supported by the Higher Education Commission (Islamabad) through the National Research Program for Universities, Grant No. 7359/Punjab/NRPU/R\&D/HEC/2017.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.