The Josephus problem is concerned with anticipating which will be the last elements left in the ordered set \(\{1, 2, \ldots, n\}\) as successive $m$th elements (counting cyclically) are eliminated. We study the set of permutations of \(\{1, 2, \ldots, n\}\) which arise from the different orders of elimination as \(m\) varies, and give a criterion based on the Chinese Remainder Theorem for deciding if a given permutation can be interpreted as arising as a given order of elimination for some step size \(m\) in a Josephus problem.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.