Codes, Designs and Graphs from the Janko Groups \(J_1\) and \(J_2\)

J. D. Key1, J. Moori2
1 Department of Mathematical Sciences Clemson University Clemson SC 29634, U.S.A.
2School of Mathematics, Statistics and Information Technology University of Natal-Pietermaritzburg Pietermaritzburg 3209, South Africa

Abstract

We construct some codes, designs and graphs that have the first or second Janko group, \(J_1\) or \(J_2\), respectively, acting as an automorphism group. We show computationally that the full automorphism group of the design or graph in each case is \(J_1\), \(J_2\) or \(\bar{J}_2\), the extension of \(J_2\) by its outer automorphism, and we show that for some of the codes the same is true.