We answer in the affirmative a question posed by Al-Addasi and Al-Ezeh in 2008 on the existence of symmetric diametrical bipartite graphs of diameter 4. Bipartite symmetric diametrical graphs are called \( S \)-graphs by some authors, and diametrical graphs have also been studied by other authors using different terminology, such as self-centered unique eccentric point graphs. We include a brief survey of some of this literature and note that the existence question was also answered by Berman and Kotzig in a 1980 paper, along with a study of different isomorphism classes of these graphs using a \( (1,-1) \)-matrix representation which includes the well-known Hadamard matrices. Our presentation focuses on a neighborhood characterization of \( S \)-graphs, and we conclude our survey with a beautiful version of this characterization known to Janakiraman.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.