Symmetry plays a fundamental role in the design of experiments. In particular, symmetries of factorial designs that preserve their statistical properties are exploited to find designs with the best statistical properties. By using a result proved by Rosenberg [1], the concept of the LP relaxation orthogonal array polytope is developed and studied. A complete characterization of the permutation symmetry group of this polytope is made. Also, this characterization is verified computationally for many cases. Finally, a proof is provided.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.