Directed Metric Dimension of Oriented Graphs with Cyclic Covering

Sigit Pancahayani1, Rinovia Simanjuntak1
1Combinatorial Mathematics Research Group Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung, Bandung 40132, Indonesia

Abstract

Let \( D \) be a strongly connected oriented graph with vertex-set \( V \) and arc-set \( A \). The distance from a vertex \( u \) to another vertex \( v \), \( d(u,v) \), is the minimum length of oriented paths from \( u \) to \( v \). Suppose \( B = \{b_1, b_2, b_3, \ldots, b_k\} \) is a nonempty ordered subset of \( V \). The representation of a vertex \( v \) with respect to \( B \), \( r(v|B) \), is defined as a vector \( (d(v,b_1), d(v,b_2), \ldots, d(v,b_k)) \). If any two distinct vertices \( u,v \) satisfy \( r(u|B) \neq r(v|B) \), then \( B \) is said to be a resolving set of \( D \). If the cardinality of \( B \) is minimum, then \( B \) is said to be a basis of \( D \), and the cardinality of \( B \) is called the directed metric dimension of \( D \).

Let \( G \) be the underlying graph of \( D \) admitting a \( C_n \)-covering. A \( C_n \)-simple orientation is an orientation on \( G \) such that every \( C_n \) in \( D \) is strongly connected. This paper deals with metric dimensions of oriented wheels, oriented fans, and amalgamation of oriented cycles, all of which admit \( C_n \)-simple orientations.