The Ramsey number \( R(C_4, K_m) \) is the smallest \( n \) such that any graph on \( n \) vertices contains a cycle of length four or an independent set of order \( m \). With the help of computer algorithms, we obtain the exact values of the Ramsey numbers \( R(C_4, K_9) = 30 \) and \( R(C_4, K_{10}) = 36 \). New bounds for the next two open cases are also presented.