To address large prediction errors in traditional risk assessment methods, the X-means clustering algorithm is utilized to segment financial product customers, combined with correlation strength analysis to understand customer behaviors and needs. Using the Hoteling model, a two-step pricing strategy is proposed, revealing that data product prices are inversely proportional to depreciation rate, timeliness, and customization degree, and deriving the platform’s optimal pricing strategy. A financial risk indicator system is developed using principal component analysis for systematic risk assessment. In call option pricing prediction, the model converges at Epoch=40, achieving a normalized predicted price of 0.154 (true value: 0.153). For put options, the model converges at Epoch=100, with a predicted normalized price of 0.146 (true value: 0.145). The results demonstrate the model’s accuracy in pricing prediction, providing effective support for real-time market risk monitoring and timely risk prevention.