Digital twin technology-based three-dimensional design of the entire substation engineering infrastructure process

Guiqin Hao1, Jun Wang2
1Guang Zhou Electric Power Construction Co., Ltd, China
2Huiyuantong Group Co., Ltd, China

Abstract

Conventional techniques to electric power network (EPN) design and management are insufficient to handle extreme weather events like hurricanes due to the growing complexity and fragility of power systems. As a sophisticated simulation and optimization tool, digital twin (DT) technology may offer real-time power infrastructure monitoring and prediction. This study aims to investigate the possible application of digital twin technology in enhancing power system resilience and streamlining the design process, as well as to use it for the 3D design of the full substation engineering infrastructure process. A digital twin-based EPN model that incorporates all of the main components of the power system—power plants, substations, transmission and distribution networks, and customers—is proposed in this paper. Every component of the power system undergoes vulnerability analysis, and the chance of the system failing is calculated using a Bayesian network (BN) model and a parametric vulnerability function. According to modeling projections, Hurricane Ike will cause the majority of consumers’ power supplies to be interrupted. The model predicts that power consumption for residential, commercial, and industrial buildings will be 96.4%, 96.0%, and 94.2%, respectively, depending on the kind of building.

Keywords: digital twin technology, power grid, substation engineering, 3d design, vulnerability analysis