Dance drama is a comprehensive art with dramatic conflicts and plots based on the use of dance’s own language system, which plays an important role in cultural dissemination and aesthetic experience. The article designs a resource library of classic dance drama works in the way of WEB site, establishes a data dynamic distribution strategy to deal with structured data, and combines the consistent hash algorithm to optimize the load balancing of structured data in the resource library. Then, a graph convolutional neural network model and a sample-weighted aesthetic classification model are combined to establish an aesthetic assessment model for images of classical dance drama works, and a regularized matching module is designed. For the application effectiveness of the structured data processing strategy, the structured data processing of the classic dance and drama works resource library is verified, and the hyperparameters of the model, evaluation results and ablation experiments are also analyzed. Combined with the data in the resource library of classic dance drama works, the aesthetic experience of the audience was analyzed using a questionnaire. After using the dynamic distribution strategy to process the structured data, its write and query times were shortened by 40.05% and 17.89% compared to before use, and the response time under different index query load balance degrees did not exceed 55ms.The accuracy of the aesthetic assessment model for classical dance and drama works was 48.85%, and the accuracy improvement of the G-AANet model compared to BoTNet ranged from 0.93% ~ between 6.12%. The resource base of classical dance drama works established through structured data processing helps to enhance the audience’s aesthetic experience of dance drama works and helps them to appreciate the spiritual connotation of dance drama works.