In this paper, the image parameters are preprocessed by the gray scale histogram statistical image parameters, which reflect the gray scale distribution information of the plant images, using the zero-mean normalization formula. According to different lighting conditions, the plant image is segmented, and the texture feature information in the plant image is extracted by using the improved grayscale covariance matrix. The hyperspectral linear mixing model is constructed, and the MVSA algorithm meta-decomposes the mixing model to solve the solution optimization problem. Using the natural gravity embossing method, produce plant embossed flowers and analyze the features and spectral curves of different parts of the embossed flowers to evaluate the comprehensive use of the embossing method proposed in this paper. The ROI images of 1200 embossed pattern petals were calculated to obtain the sample spectral matrix of embossed petals, in which the reflectance of the central petal was the highest among the three parts at a wavelength of 450 nm, with a reflectance of 0.46487, and then decreased, and then gradually increased to one place after the wavelength was equal to 694, with a reflectance of 0.8. The reflectance of the Shaanxi Weixiang (Weixia), the single side-embossed Yuanbaosi (Yuanbao maple), the hammered elm (fruits), and the pachypodium (Green) obtained a full score of 35 in the comprehensive evaluation after drying, which is a perfect embossed plant material, and all the plant materials embossed using the method proposed in this paper averaged above 30, and the comprehensive effect of plant embossing was good.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.