The current changes in China’s population structure and dynamics have led to profound challenges in population planning, forecasting, decision-making, and early warning. To address the issues of predicting age- and gender-specific population retention, migration, and birth rates, a combination model of Multilayer Perceptron (MLP) and Random Forest (RF) is constructed using stacking techniques, with a discrete population development equation as the base model. The MLP-RF model is employed to perform regression training on population data, resulting in a novel ensemble approach to population forecasting. The study uses the data from the sixth and seventh national censuses of Hebei Province, reconstructing population data for 2010-2020. After data training and error evaluation, it is demonstrated that the ensemble forecasting model has excellent predictive capabilities for population retention, migration, and birth-related issues.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.