The specialty of soil and water conservation and desertification control has gradually become a hot and popular discipline, and the educational practitioners of this specialty must also follow the trend and actively carry out educational reform. This paper utilizes genetic algorithm to conduct in-depth research on the problem of class scheduling, and on the basis of traditional genetic algorithm, an improved adaptive genetic algorithm is proposed to be applied to the class scheduling system. Through the adaptive adjustment of genetic parameters to improve the convergence accuracy of the genetic algorithm and accelerate the convergence speed, and finally after chromosome conflict detection and repeated iterative operations, the final optimal scheduling program is obtained. The improved adaptive genetic algorithm is applied in the course scheduling system of soil and water conservation planning and design in colleges and universities. After experimental verification, the improved new adaptive genetic algorithm, under the setting of different rules of scheduling conditions, under the setting of different rules of scheduling conditions, the fulfillment rate of students’ class selection reaches 100%, and the mean value of the overall rule fulfillment rate reaches 94.1%, and the overall fulfillment rate of the scheduling efficiency is improved to 96% by applying it to the intelligent class scheduling system. Finally, the professional classes were tested on the knowledge of soil and water conservation planning and design, and the remaining eight dimensions of professional knowledge were accompanied by questionnaires, and the achievement data of the test were statistically analyzed using SPSS22.0. The analysis results show that the test scores are quasi-normally distributed, and the actual pass rate of each question in the test paper is roughly close to the preset difficulty, which proves that the test paper is of good quality and the algorithm designed by the institute can basically meet the requirements.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.