With the increasing complexity of the financial market, corporate financial fraud events occur frequently, posing a serious challenge to investors and market regulators. Aiming at the limitations of traditional financial fraud recognition methods, this paper constructs a financial fraud recognition model MCN based on the topological data analysis method. The model consists of two parts: the Mapper algorithm and one-dimensional convolutional neural network (1DCNN), which combines the global topology extracted by the Mapper algorithm with the local features of the IDCNN to realize the effective identification of financial fraud samples. In order to evaluate the recognition performance of the model, this paper controls the topological feature extraction method unchanged and the classifier unchanged respectively, and compares the performance of the MCN model with other financial fraud recognition models. The results show that the Acc and F1-score of the MCN-based financial fraud recognition model in this paper are 98.69% and 97.64%, respectively, which are better than other models in both perspectives, proving the superiority of the financial fraud recognition model based on topological data analysis constructed in this paper, and thus providing powerful technical support for the regulation of the financial market and the risk management of enterprises.