Logistic Regression Analysis of College Students’ Learning Behavior Considering MOOC Data in Online Learning Environment

Abstract

MOOC as a new teaching mode is developing in full swing, however, MOOC courses face the thorny problems of high dropout rate and low completion rate. Therefore, this paper selects 12 learning behaviors and uses logistic regression model, decision tree and other methods to predict the withdrawal behavior according to the MOOC data on 365 University platform. The logistic regression prediction is analyzed for prediction accuracy, and its AUC value is 0.83 and 0.75, which proves that the logistic regression analysis can achieve the prediction of MOOC withdrawal behavior more stably and accurately, and helps to provide scientific guidelines for improving MOOC learning mode and learning efficiency. From the case study, it is obtained that among all the learning behaviors, the weight of online rate is 0.7582, which has the highest weight, indicating that the online rate of college students is an important index for judging whether they will produce withdrawal behaviors, which deserves the attention of MOOC platforms and educators.

Keywords: logistic regression analysis; decision tree; MOOC; learning behavior