Machine learning-based learning analytics can fully use the learner learning behavior interaction data recorded by online English teaching systems, providing support for observing students’ learning process from the perspective of learning behavior. In this paper, we construct a framework for recognizing college students’ English learning behavior patterns, propose an SGT-based feature extraction algorithm for learning sequences, and use Gaussian mixture models to identify the extracted learning characteristic sequences. Subsequently, a K-means clustering algorithm is used for sequence clustering and lag sequence analysis. At the same time, the English personalized teaching method is designed by combining the proposed personalized knowledge point recommendation method of multi-knowledge fusion in-depth knowledge tracking and group feature collaborative filtering. The results show that college students’ English learning behaviors are classified as active, passive, and passive, and the behavioral sequences of students in different modes are differentiated, in which the sequence residual value of active learners is greater than 1.96. There is a significant difference between the personalized teaching mode and the ordinary teaching mode in terms of the learning mode and the learning effect (P<0.05), and it can achieve a better English teaching effect.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.