The numerical simulation of the velocity decay characteristics of multilayer spherical fragments under bombardment loading is carried out by using LS-DYNA, and the distribution law of the velocity decay characteristics of multilayer spherical fragments is obtained. The ballistic limit (V50) of the multilayer spherical fragment on a 4mm 2024 aluminum target at 90° angle of attack is also obtained by ballistic test. Based on the consistency between the numerical simulation and the test results, the influence of the quality of the multilayer spherical fragment on V50 is analyzed. The air resistance coefficient is calculated with the numerical simulation results by constructing a rag flight distance calculation model. The maximum error between the calculated results and the test results is about 2%, and the theoretical calculated values are in good agreement with the numerical simulation and test results. Under the condition of the same initial velocity, the attenuation coefficient of the spherical fragment in long-distance flight is constant. The aerodynamic drag coefficient is related to the initial velocity of the fragment, which is linearly related to the initial velocity in the range of the design concern of the combat unit (1.2-2.2km/s).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.