The article applies recurrent neural networks to multi-intelligent body collaborative autonomous systems and uses optimized RNN algorithms for multi-objective detection and path planning of intelligent bodies. The multi-intelligent body multi-target detection and path planning model optimized based on recurrent neural network is constructed to realize multi-target detection and tracking of intelligent bodies and multi-intelligent collaborative path planning. Simulation experiments are designed with a mobile robot as the research object to analyze the trajectory tracking and path planning effects of the multi-target detection and path planning model in this paper. The error between the actual trajectory and the reference position of the robot trajectory tracking is continuously reduced, and reaches complete coincidence at the 127th reference tracking point. The actual speed and acceleration errors of the robot are infinitely close to 0. The accuracy of this paper’s algorithm in multi-objective path planning is 100%, the average arrival time is 20.02s, and the probability of collision is 0%, which is much better than other algorithms. The algorithm in this paper has the highest path smoothing validity for planning in three environments. In the 30 × 83 warehouse map, the total path length of this paper’s algorithm is shortened by 13.00% and 10.77%, and the total path cost is shortened by 9.71% and 11.52% compared with the Wd-SIPP algorithm for the number of collaborative robots in a single group of three and five, respectively. In 100*100 storage map, the total path length is shortened by 10.32% and 11.67%, and the total path cost is shortened by 7.34% and 12.09%, respectively.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.