The flipped classroom relies on a smart platform to assist the implementation of English translation teaching, combining the smart platform with the students as the core to realize the efficient interaction of English translation teaching and enhance the students’ interest in English translation learning. This paper develops an easy-to-use interactive system for English translation teaching in flipped classroom based on Fine Report, and utilizes MySQL database to store the relevant data generated in the process of use. In this system, the BERT model trained by matrix masking strategy is used as the basis, and the neural machine translation model that assists teachers in English translation homework correction is established by combining the NMT model. Then the K-Means clustering algorithm is optimized by the adaptive K-value selection method, and the students’ learning data on the system is clustered by using the improved K-Means, and the student performance evaluation model is established by combining the CART decision tree. A pedagogical comparison experiment was carried out for the feasibility of the interactive system for teaching English translation in the flipped classroom. The BLUE value of machine translation using the BERT-NMT model was always above 30, and the average accuracy of student performance prediction of the K-Means-CART model could reach 84.85%. The English translation performance of the students in the experimental class was significantly improved after the teaching experiment, and the overall satisfaction of the students with the interactive system for teaching English translation was 4.038 points, which was between the satisfied~very satisfied level. Fully combining intelligent technology to assist teachers in teaching English translation under the flipped classroom can help to enhance the quality of cultivating English translation talents in colleges and universities.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.