Colleges and universities are an important part of higher education, providing a large number of talents for social development. The study optimizes the way of student management in colleges and universities based on artificial intelligence technology. Firstly, the K-means algorithm in cluster analysis is used to classify students’ campus behavioral characteristics. Then use Apriori algorithm to correlate students’ behavioral characteristics with academic performance. Finally, colleges and universities can take differentiated management measures for different categories of students. The clustering analysis of 12,885 students’ consumption behavior, work and rest behavior, and study behavior in college Z, followed by the correlation analysis between the clustering results and academic performance, and a total of 10 correlation rules were found. Colleges and universities can formulate management rules based on the analysis results to improve management efficiency. In addition, the student management work of colleges and universities can be optimized and upgraded in several directions, including the awareness of student management work in colleges and universities, the information platform, the archive management work, the student management team, and the information security work.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.