Let \( G(V,E) \) be a simple connected graph with vertex set \( V \) and edge set \( E \). The Wiener index in the graph is \(W(G) = \sum_{\{u,v\} \subseteq V} d(u,v),\) where \( d(u,v) \) is the distance between \( u \) and \( v \), and the Hosoya polynomial of \( G \) is \(H(G, x) = \sum_{\{u,v\} \subseteq V} x^{d(u,v)}.\) The hyper-Wiener index of \( G \) is \(WW(G) = \frac{1}{2} \left( W(G) + \sum_{\{u,v\} \subseteq V} d^2(u,v) \right).\) In this paper, we compute the Wiener index, Hosoya polynomial, and hyper-Wiener index of Jahangir graph \( J_{8,m} \) for \( m \geq 3 \).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.