Contents

On \(Q(a)P(b)\)-Super Edge-Gracefulness of Hypercubes

Harris Kwong1, Sin-Min Lee2
1Department of Mathematical Sciences State University of New York at Fredonia Fredonia, NY 14063, USA
2Department of Computer Science San Jose State University San Jose, CA 95192, USA

Abstract

Let \( a, b \) be two positive integers. A \( (p, q) \)-graph \( G \) is said to be \( Q(a)P(b) \)-super edge-graceful, or simply \( (a, b) \)-SEG, if there exist onto mappings \( f : E(G) \to Q(a) \) and \( f^* : V(G) \to P(b) \), where

\[
Q(a) = \begin{cases}
\{\pm a, \pm(a+1), \ldots, \pm(a + (q-2)/2)\} & \text{if } q \text{ is even}, \\
\{0, \pm a, \pm(a+1), \ldots, \pm(a + (q-3)/2)\} & \text{if } q \text{ is odd},
\end{cases}
\]

\[
P(b) = \begin{cases}
\{\pm b, \pm(b+1), \ldots, \pm(b + (p-2)/2)\} & \text{if } p \text{ is even}, \\
\{0, \pm b, \pm(b+1), \ldots, \pm(b + (p-3)/2)\} & \text{if } p \text{ is odd},
\end{cases}
\]

such that \( f^*(v) = \sum_{uv \in E(G)} f(uv) \). We find the values of \( a \) and \( b \) for which the hypercube \( Q_n, n \leq 3 \), is \( (a, b) \)-SEG.