Contents

Dynamic Analysis of a Fractional-Modified Leslie-Gower Model with Predator Harvesting

M. Saqib Khan1, Absar Ul Haq2, Waqas Nazeer3
1Department of Mathematics, Government College University, Lahore 54000, Pakistan
2Department of Mathematics, Riphah International University-Lahore Campus, Islamabad, Pakistan
3Department of Basic Sciences and Humanities, University of Engineering and Technology, Lahore(NWL Campus), Pakistan

Abstract

This paper presents an investigation of a modified Leslie-Gower predator-prey model that incorporates fractional discrete-time Michaelis-Menten type prey harvesting. The analysis focuses on the topology of nonnegative interior fixed points, including their existence and stability dynamics. We derive conditions for the occurrence of flip and Neimark-Sacker bifurcations using the center manifold theorem and bifurcation theory. Numerical simulations, conducted with a computer package, are presented to demonstrate the consistency of the theoretical findings. Overall, our study sheds light on the complex dynamics that arise in this model and highlights the importance of considering fractional calculus in predator-prey systems with harvesting.

Keywords: Fractional calculus, Leslie-Gower model, Predator-prey dynamics, Harvesting, Bifurcation analysis